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Negative binomial probability density

Probability distribution Different text (and other parts of this article) adopt slightly different definitions for negative binomial distributions. It is important to identify whether support starts at k = 0 or k = r, whether p indicates the likelihood of success or failure, whether r indicates success or failure,[1] or the specific parametalization used in a given text. The probability mass function orange line represents the same average as 10 in each of these plots. The green line displays the standard deviation. Notation N B (r, p) {\display style \mathrm {NB} (r,\,p)} parameters r &gt; 0 -
Number of failures until the experiment is stopped (integer, but the definition can also be extended to reality) p ∈ [0,1] - Probability of success of each experiment (actual)∈, 1, 1 2, 3, } } — Number of successESPMF k ↦ (k + r - 1 k) ↔ (1 - p) r p k, {\display style k\map {k +r-1 \ select k}\cdot (1-p)^{r}p^{k}, } Binmial coefficient CDF k ↦ 1 - I p + 1 , r ) , {\display style k\map 1-I_ {p} (k+1,\,r),} normalized incompletebeta functionMean p r 1 - p {\display style {\frac {{1-p}} Mode {⌊ p (r - 1) 1 ⌋ - 10 &gt; ≤ 0 \Display Style {\Start {Case}{\Large \lfloor}{\frac {p (r-1)}}} 1-p}\Large \rfloor
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&lt; 1 p {\Display Style {\biggl (}{\frac {1-p}{1-pz}}}}}}}}}}}}}}}}}}{{\!} {}}}}}}}}}}}}}}}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}Fisher Information r (1 - p) 2 p {\display style {\frac {r}{{) Method of 1-p)^{2}p}} Moment r = E [ X] 2 V [ X ] - E [ X ] {\Display Style r ={{\\\\\\\\\frac {E[X]^{2}}}}}}}}}-E[X]}}}} p = E ] X ] X ] {\display style p=1-{\frac {E[X]}{V[X]}}} }} }} } } } In probability theory and statistics, the negative non-random distribution is a isa probability distribution modeled on the number of successes in the sequence of independent and
equally distributed Bernoulli tests before a specified (non-random) number of failures (mark r) occurs. [2] For example, you can define a die 6 as a rolling failure, roll another number to success, and ask how many successful rolls will occur before you see a third failure (r = 3). In this case, the probability distribution of the non-6s Iso-like distribution. Pascal distribution (after Blaise Pascal) and polya distribution (for George Pólya) are special cases of negative iso-iso-like distribution. The agreement between engineers, climatologists, and others is to use negative inomials or
pascals for the stop-time parameter r of integer values, and polya for actual values. To generate related dispersal events, such as tornado occurrences, you can use the polya distribution to provide a more accurate model than the Poisson distribution by allowing the mean and variance to differ from the Poisson distribution. Negative inomial distributions have the same distribution as Poisson in the variance μ (1 + μ/r) {\display style \mu(1+\mu/r)}}} and limit r → ∞, and a given average μ {\displaystyle \mu} this can be useful for variances for poisson distributions (for
example, a strong modification of poisson regression). In epidemiology it has since been used to model disease transmission for infectious diseases, where the likely number of infections can vary considerably from individual to individual and up to settings. [3] In general, it may be appropriate if the event is correlated with an occurrence that causes a greater difference than if the occurrence is independent due to positive covariability terms. The isomial in the term negative may be because certain iso-factors that appear in formulas for the probability mass function of the
distribution can be written more simply as negative numbers. [4] The definition assumes that there is a sequence of independent Bernui tests. Therefore, each exam has two potential consequences: success and failure. In each trial, the probability of success is p and the probability of failure is (1 -p). This order is being observed until the success of the predefined number r occurs. Then you will have the random number of failures we have seen, X, negative binomial (or Pascal) distribution: X ~ NB  (r, p) {\display style X \sim \operator name {NB} (r,p)} When applied to real
world problems, the consequences of success and failure can usually be seen as good results or not good. Say you want to use a negative, insan distribution to model the number of days a particular computer works before it breaks down. In this case, the failure will be the result on the day the machine is functioning properly, but the failure will be a success. However, if a player used a negative iso-random distribution to model the number of goal attempts before scoring a r goal, each attempt would be a failure and scoring a goal would be a success. If we toss a coin, the
negative iso-random distribution can give us the number of tails (failures) we are likely to encounter. We happen to have a certain number of heads (success). In the probability mass function below, p is the probability of success, and (1 - - p) is the probability of failure. Probability mass function The probability mass function of the negative ibiomial distribution is F (k; r, p) ≡ Pr (X = k) = (k + r − 1 r − 1) (1 - p) k r {\display style f (k;r,p)\\\\\\\\\\\\\\\\\\equiv \Pr (X=k)={\binom {k+r-1}{r-1}} (1-p)^{k}p^p{r}} Number of successes, k is the number of failures, p is the probability of
success. The amount of parentheses here is the isomial coefficient (k + r − 1 r − 1) = (k + r − 1)! (r - 1) ! (k) ! = (k + r - 1 ) (k + r - 2) ⋯ (r) (k) ! . {\display style {\binom {k+r-1}{r-1}}}={\frac {(k+r-1)!} {(r-1)!\,(k)!}} ={\frac {(k+r-1) (k+r-2)\DOSM (r)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} There is a k error selected in the k+r-1 sample in place of the k+r-1 sample because the last of the k+r-1 samples is by definition a success. This quantity can be written in the following way, alternatively describing the name negative inomial: (k + r - 1) ⋯ (r) (k) ! = (-1) k (− r ) (-r − 1) (-r − 2) ⋯ (-r - k + 1)
(k) (k) ! = (--1) k (-r k). {\Display Style {\Start{Sort}&amp;{ \\frac {(k+r-1)\DOSM(r)}{(k)!}}} \\[6pt]={}&amp;amp;(-1)^{k{\frac {(-r)(-r-1)(-r-2)\도점(r-k+1)}{(k)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} =(-1)^{{k}{\binom {-r}{-/k}}.\end{정렬}}} 마지막 식과 이소미 계열에 의해, 모든 0 ≤ p &lt; 1 q = 1 - p {\디스플레이 스타일 Q = 1-p } , p − r = (1 - q ) - r = ∑ k = 0 ∞ (− r k) (- q ) = ∑ k = 0 ∞ (k + r - 1 k) q k {\디스플레이 스타일 p^{-r}=(1-q)=(1-q){-r}=_{_{_{k=0}{\
{{_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ∑ k = 0 ∞ (k + r - 1 k) (1 - p) k p r = p - p - r p r = 1 {\디스플레이 스타일 \sum _{k=0}^{{k+r-1}{k}(1-p)}(1-p)={k}}p{p{r}=p^p^_r},질량=1}을 이해 k + r 시험의 결과가 독립적으로 발생하기 때문에 r 성공및 k 실패의 모든 특정 시퀀
스에 대한 확률은 pr (1 - p)k입니다. Since Rth success always comes last, it remains to choose the K test with the remaining k + r-1 failed in the test. The isomi coefficient above accurately provides the number of all sequences in length k + r - 1 due to combination analysis. Cumulative distribution function Cumulative distribution function can be expressed in terms of normalized incomplete beta function: F (k &amp;r, p) ≡ Pr (X ≤ k) = 1 -i p (k + 1, r) = I 1 -p (r, k + 1). {\Display Style F (k;r,p)\equiv \Pr (X\leq k)=1-I_{p} (k+1,r)=I_{1-p} (r, k+1)}}} It can also be expressed in terms of
cumulative distribution function Ibiomi distribution:[5] F (k &amp;r, p) = F b i n o m i l (k; n = k + r, p) . {\Display Style F (k;r, p)=F_{binomial} (k;n=k+r,p)} Alternative Some sources can define negative iso-random distributions slightly differently from the main one here. The most common variation is where random variable X calculates something else. These changes can be seen in the table here: X counts ... Probability mass function formula alternative formula (using equivalent binomial) alternative formula (simplification of use: n = k + r {\text style n = k + r}) support 1 k
failure, given r success f (k &amp; r, p) ≡ Pr (X = k) = = {\text style f (k;p)\equiv \Pr (X =k)=} (k + r - 1 k) p R (1 - p) k ) k {\binom {\binom {k +r-1}{{k}}p^{r} (1-p)}}{{k}} [6][7][8] (k + r - 1r − 1r) p r (1) p r (1) p r (1 ) p r ) p) k {\binom {\binom {k +r-1}}}p^{{r} (1-p){{{r}[9][10][12][12][n^12] 12] (n^1p) p r (1 p) k {\text style {\binom {n-1}{c} {\display style {\text{}}}k=0,1,2,\lds} 2n trial, given r success f (n; r, p) ≡ Pr (X = n) = {\text style f (n;p) ,p)\equiv \Pr (X =n)=} (n - 1 r − 1 ) p r (1 - p) n - r {\text style {\biom {\binom {n-1}{r-1}}p{r (1-p)^{n-r}} [7][12] ][13][13][14][15] (n − 1 n − r) p r (1 - p) n - r
{\text style {\binom {n-1}{n-r}}p^r} (1-p)} (1-p)^{ N = r, r + 1 , r + 2 , ... {\Display Style {\Text{}}n=r, r+1, r+2,\dotsc} 3 n Exam, Given r failure f (n; r, p) ≡ Pr (X = n) = ={\text style f (n;p,p,p)\equiv \Pr (X =n)=} (n − 1 r − 1 ) p n − r r (1 - p) r {\text style {\binom {n-1}{r-1}}p^{n-r}r (1-p)^{{r}} (n−r) p n − r (1 - p) - p n - p ) (1 - p) r {\text style {\binom {n-1}{n-r}p^}}} (1-p)}}}}}}}}}}}}}} r}(n −1k) p k (1 - p) r {\textstyle {\binom {n-1}{k}p^{k} (1-p)^{r}} 4r success, Given n test f (r; n, p) ≡ Pr (X = r) = {\text style f (r;n,p)\equiv \Pr (X=r)===} This is an ibimial distribution: (n r) p r (1 - p) n - {\text style
{\binom {n}{r}}p{ , 1, 2 , ... The first alternative formula is simply an equivalent form of the ≤ ≤ ibinomial coefficient, that is, the {\text style {\binom {a}{b}===binum {a}{a-b}\quad {}}\quad {}}\0\leq b\leq a} second alternative formulation, the total number of tests is simply the number of successes and failures. This simplifies the expression by recognizing that n = r + k {\textstyle n=r=k}. These second formulas may be more intuitive. They have more terms, but are probably less practical. A definition in which X is the number of K failures that occur for a given number of r
successes. This definition is very Considering what is calculated and given the basic definitions used in this article, only K success and r failures are switched. However, p still indicates the probability of success. The definition of the number of n tests that X occurs for a given number of R successes. This definition is very #2 the definition of the system, and only r success is provided instead of the k failure. However, p still indicates the probability of success. The definition of negative ibiomial distribution can be extended to when the parameter r can take positive actual
values. It is impossible to visualize failures that are not integers, but the distribution can be formally defined through the probability mass function. The problem of extending the definition to real value (positive) r results in expanding the isomial coefficient in real value correspondence, depending on gamma function: (k + r - 1 k) = (k + r - 1) (k + r - 2) ⋯ (r) k! = Γ (k + r) k! Γ ( r) {\표시스타일 {\binom {k+r-1}{k}}{{{={\\frac {(k+r-2)(r)}\도스엠(r)}{k!}} } ={\frac {\감마(k+r)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}는 확률
질량 함수가 있는 경우 X가 음의 비노미알(또는 Pólya) 분포를 가지는 경우, f(k; r, p) ≡ Pr(X= k) = Γ(k+ k) Γ (r) (1 - p) r p k = 0, 1, 2 , ... {\display style f (k;r,p)\equiv \Pr (X=k)={\frac {\gamma (k+r)}{k!\,\gamma(r)}}}}}}}}}}}}}}}} } {}p^p^k}\Quad {}}}0,1,2,2\Dotc} } } r here is a real, positive number. In negative inverse regression,[16] the distribution is specified in terms of its mean, m = p r 1 - p {\text style m={\frac {pr}{1-p}}} }, which is related to the description variable, as in linear regression or other generalline models. In the expression for average m, One p = m + r {\text style p ={\frac
{m}}} and 1 - p = r + r {\text style 1-p ={\frac {r}{r}}}} Then replaces these representations with one for the probability mass function when the actual value value is, and calculates this parametization of the probability mass function in terms of m: Pr (X = k) = Γ (r + k) k! Γ (r r + m) r (m r + m) k = 0, 1, 2 , ... {\디스플레이 스타일 \Pr(X=k)={\frac {\감마(r+k)}{k!\,\감마(r)}}}\왼쪽({\frac {r}{r+m}\오른쪽)^{r}\왼쪽({\frac{m}{m}{{{{{{{{{{{{{{{{{{{{{{{{{{{{{0}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
{{c}==================================================================================================================== 그런 다음 분산을 m + m 2 r {\텍스트 스타일 m +{\frac {m^{2}{r}}로 쓸 수 있습니다. 일부 작성자는 α = 1 r {\텍스트 스타일 \알파 ={\frac {1} {r}}}를 설정하고 m + α m 2 {\텍스트 스타일 m +\알파 {2}}로 분산을 표현하는 것을 선호합니다. 이 컨텍스트에서, 그리고 저자에 따라, 매개 변수 r 또는 상호 α 분산 매개 변수, 모양 매개 변수 또는 클러스터링 계수, [17] 또는 이질성[16] 또는 Parameter. [11] Term aggregation is particularly used in
ecology when describing the number of individual organisms. Reduction of the aggregate parameter r is towards 0, corresponding to the aggregation increase of the organism. The increase in r towards infinity is in the absence of aggregation, as can be explained by poisson regression. Sometimes the distribution is μ in terms of average value and variance σ2: p = σ 2 - μ σ 2 , r = μ 2 σ 2 - μ, Pr (X = k) = (k + μ 2 σ 2 - μ - 1 k) (σ 2 - μ σ 2 ) k (μ σ 2 ) μ 2 / (σ - μ). {\Display Style {\Start{Sort}&amp;p={\frac {\Sigma ^{2}-\mu}}}}} {2}}}}},\\\\\\}[6pt];---------------------------------------------
-------------------------------------------------}{2} {2}},\\\------,000;\pr (X {2}=k)\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}},00 0 igma ^{2}\mu}-1\Selection k}\Left ({\frac{\sigma^{2}-\mu}{\Sigma^{2}}}}\right)^{{k}Left ({\frac{\----sigma^{2}}\right).{ 2} {2}{\ An example of selling candy pat collis is to sell a candy bar to raise money for a sixth grade field trip; there are 30 houses in the neighborhood, and Pat won't come home until five candy bars are sold; so the kid sells a candy bar, goes door to door; each house has a 0.6 chance of selling one candy bar and a 0.4 chance of selling anything. Selling
enough candy (as opposed to not selling it) defines our stop criteria, so in this case K represents the number of failures and r represents the number of successes. The NegBin (r, p) distribution explains the probability of success in the last test and K failure and r success in the k + r Bernoulli (p) test. Selling five candy bars means five successes. Therefore, the number of tests it takes (i.e. housing) is k + 5 = n. The random variable we are interested in is the number of houses, so K = n - 5 is the NegBin (5, replace with 0.4) and get the next mass function of the housing
distribution (n ≥ 5) f ) = (n - 5) + 5 - 1 - 1 - 0.4 n - 5 - 5 - n - 5 - 5 - 5 - n - 5 - 5 - n - 5 - n - 5 - 5 - n - 5 - n - 5 - n - 5 - {\display style f(n)={(n-5)+5-1 \selection n-5}\;(1-0.4)^{5}\;0.4^{n-5}={n-1 \n-5}\selected-5}\;3^{5}\\ {\frac {2^{n-5}}{5^{{n}}}}}}}} What are pat's chances of getting to his 10th home? f (10) = 0.1003290624. {\Display Style f(10)=0.1003290624.\,} What are the chances that pat will be completed before he gets to his eighth home? Before finishing the eighth house, Pat must finish at 5th, 6th, 7th or 8th House. These probability totals: f (5) = 0.07776 {\display style
f(5)=0.07776\,} f (6) = 0.15552 {\display style f(6)=0.15552\,} f (7) = 0.0. 18662 {\Display Style f (7)=0.18662\,} f (8) = 0.17418 {\Display Style f(8)=0.17418\,} ∑ j = 5 8 f (j) = 0.59408. \sum _{j=5}^{8}f(j)=0.59408.} What are pat's chances of exhausting all 30 homes in the neighborhood? This can be expressed as the probability that pat does not finish in fifth through the tying house: 1 - ∑ j = 5 30 f (j) = 1 - I 0.4 (5, 30 − 5 + 1) ≈ 1 - 0.9999342 = 0.00000658. {\Display Style 1-\sum _{j=5}^{30}f(j)=1-I_{0.4} (5,30-5+1)\Approx. 1-0.99999342=0.00000658.} Because Pat's chances of
selling to each house are somewhat higher (60%), the chances of not fulfilling her quest are disappearing; the length of stay at the inpatient hospital is an example of real data that can be well modeled with negative exo-real-world distributions. [18] The expected total number of successes in the property expected parameters (r, p) and negative is rp / (1 - p). To see this, imagine multiple experiments simulating negative isomie. This means that until you get an R failure, a series of tests are performed, different sets of tests are performed, different tests, etc. are performed.
Note the number of tests performed in each experiment: a, b, c, ... And set + b + C + ... = N. Now we will look forward to the success of Total Np. Let's say the experiment was performed n times. Then there is the total nr error. So we would expect NR = N (1 -p), so N / N = r / (1 - p). N/n is only the average number of tests per experiment. This is what we mean. The average number of successes per experiment is N/ n - r = r / (1 - p) - r = rp / (1 - p). Agree to the average given in the box on the right side of this page. Number of variance failures r When calculating the number
of numbers of reported successes, the variance is rp / (1 - p)2. When calculating the number of failures before r-th success, the variance is r(1 to p)/p2. The relationship to the inanity theorem is any variable with an in distress distribution with Y parameters n and p. Assume p + q = 1, p, q ≥ 0, next 1 = 1 n = (p + q) n. {\Display Style 1=1^{n}=(p+q)^{n}}} Using Newton's inomial theorem, this can be recorded equally: (p +q) n = ∑ k = 0 ∞ (n k) p k n − k, {\Display Style
(p+q)^{n}_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________⋯_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
{\Display Style {n\Optional k}={n(n-1)(n-2)\cdots (n-k+1) \k!}}}} When N is the actual number, it is defined instead of just a positive integer. However, for binomial distributions, k&gt; n is 0. Then, for example, you can say (p +q) 8.3 = ∑ k = 0 ∞ (8.3 k) p k q 8.3 - k. {\Display Style (p+q)^{8.3}=\_{k=0}^{\\=}{8.3\Optional k}p^{k}q}q^8.3-k}}} Now r &gt; 0 family and we use a negative exponent: 1 = p r ↔ p - r = p r (1 - q) - r = p ∑ k = 0 ∞ (-r k) (-q) k . {\Display Style 1=p^{_\cdot p^{-
r}=p^{{{_{___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________r
is an integer. (If r is a non-negative integer, the exponent is positively ad-defined, so some terms in the sum above are negative, so all non-negative integer sets do not have a probability distribution.) Now we also allow a non-integer value of r. Then we have a proper negative isolytic distribution, which is a generalization of the Pascal distribution, which is consistent with the Pascal distribution when it becomes a positive integer. The sum of the independent negative-variance arbitrary variables r1 and r2 with the same value for the parameter p from the above is negative-
binomially distributed at the same p, but with the r-value r1 + r2. Recurrent relationship Has the following recurrent relationship: {(k + 1) Pr (k + 1) - p Pr (k + r) = 0, Pr (0) = ( 1 - p ) r {\Display Style {\Start {case} (k +1)\\Pr (k+1)-p\Pr (k)=0,\\\5pt]\Pr(0)=(1-p){r}\End{case}}} Related distributions ({ 0, 1, 2, 3, ‧}) is a special case of cathode polarization,  (p) = NB  (1, 1 to p). {\Display Style \Operator Name {Geom} (p)=\\Operator Name {NB} (1,\,1-p).\,} Negative is a special case of a phased distribution. Negative isolytic distribution is a special case of a isan composite poisson
distribution. The Poisson distribution takes into account the order of negative and random variables in which the stop parameter r goes to infinity, while p, the probability of success in each test, goes to 0 in a way that keeps the mean of the distribution constant. Indicating this meaning as θ, the parameters pp p p = θ/ (r + θ) θ = r p 1 - p ⇒ p = θ r + θ. {\display style \lambda =r\,{frac {p}{1-p}}\quad \right arrow \quad p=\\frac {\lambda}{r+\lambda}}}} Under this parametalization, the probability mass function will be f (k; r, p) = Γ (k + r) k! ‣ Γ (r) p k (1 - p) r = θ k! ↔ Γ (r + k) Γ (r +
θ) k ( 1 + θ r) r {\Display Style f (k;r,p)={\frac {\Gamma (k+r)}}{c!\c!\Gamma (r)}}p^k} (1-p)^{{}}}}}}}}}}}}}} }}}}}}} \cdot {\frac {\gamma (r+k)}{\gamma (r)\;(r+\lambda (^{k}}}}}}}}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }}}→
∞}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} Exponential function: rim r → ∞ F (k; r, p) = θ K! ‣ 1 ↔ 1 e θ, {\display style \lim _{r\~
\infty}f (k;r,p)={\frac {\lambda ^{k}{k!}} } \cdot 1\cdot {\frac {1}{e^{\lambda}}}, a function of poisson distributed random variables with expected value θ. That is, alternatively, the parameterized mynan distribution converges to the Poisson distribution  → ∞  and r controls the deviation from the poisson. {\Display Style \Operator Name {Poisson} (\lambda)=\lim _{r\~ \\]\Operator Name {NB} \Left (r,{\frac {\lambda}{r++Lambda}}}}right).} Gamma-iso-iso-distribution of the Poisson mixture negative occurs as a continuous mixture of poisson distribution (i.e., complex probability
distribution), wherein the mixed distribution of the Poisson rate is a gamma distribution. That is, we can see the cathode with any variable poisson (θ) distribution, where θ is distributed in a gamma distribution forming a shape = r and scale θ = p / (1-p) or β (1-p) / p at a corresponding rate is any variable. To show intuition behind this statement, consider two independent Poisson processes, success and failure, strength p and 1- p. Together, the success and failure process is the same as a single poisson process of strength 1, and if the corresponding independent coin toss
gives its head with probability p, the occurrence of the process is successful. Otherwise, it is a failure. If r is the calculation number, the coin toss shows that the number of successes before the rth failure follows a negative iso-random distribution with the parameters r and p. The count is also, however, the number of Poisson processes that succeed at any time T of the rth occurrence in the failed Poisson process. The success count follows the poisson distribution with the mean pT, where T is the latency for r occurrence in the Poisson process of strength 1-p, that is, T is
gamma distribution with shape parameters r and strength 1-p. Thus, the negative in distress distribution is the same as the Poisson distribution with the gamma distribution of the average pT with any variation T shape parameters r and strength (1 ~ p) / p. Because θ = pT is a gamma distribution with shape parameters r and strength (1 - p)/p, the previous paragraph looks like this: The following format derivation (not dependent on the calculation number r) confirms the intuition: f (k &amp; r, p) = ∫ 0 ∞ f Poisson  (θ) (k) ↔ f gamma  (r, 1 - p p) (θ) d θ = ∫ 0 ∞ θ k! e - θ ↔ θ r - 1
e - θ (1 - p) / p (p 1 - p ) r Γ (r ) d θ = (1 p) r p - r K! Γ (r) ∫ 0 ∞ θ r + k - 1 e - θ / p d θ = (1 - p) r p - r k! Γ (r) p r + k Γ (r + k) = Γ (r + k) k! Γ (r) p k (1 - p) r . {\Display Style {\Start{Sort}f (k;r,p);\\\int_{0}^{\int}f_{\Operator Name {Poisson} (\lambda) (\c)\cdot f_{_0=Operator Name {Gamma} \Left (r,\,{\\\\\\frac {1-p}{p}\right)}} (\lambda);\\mathrm {d} \lambda\\;8pt]&amp;=\\int_{0}^{\\frac {\lambda^{k}}}e^{-\lambda}\cdot\lambda^{r-1}{\frac {e^{-la mbda (1-p)/p}{{{{{p}{{1-p}{{{{{{{{{{{{{1-p}{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
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{0}}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}********************************************************************************************************************************}\}\}\}}}\}}\}\}\}}}\}}}}\}}\}\}\}\}\}}\}}\}\}\}\}\}\}\}}\}}\}}\}}\}\}}}}\}}\}}}}}}}}\}}\}}}\}}\}}}\}}}}}\}}}\}}}\}}}\}}}}\}}}}\}}}\}}}}\}}}\}}\}}\}}?}}\}\}}}\}}\}}\}}}}\}}\}}}\}}}\}}}}}}}}\}}}}\}}\}}\}}}}}\}\}}}}}}\}}}}}}}}}}}}}}}}}\}\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}.}}}}}}} wada /p}\\\\\\\[8pt]={\--frac {(1-p)^{r}}p^p^-}{-r}{}{k!}}}}}} \}\,\gamma (r+k)\\\[8]\,\gamma (r+k)\\[8]\pt];={\frac {\gamma(r+k)}{k!\\\\gamma(r)}} }}}}}}}}};p}}}{{{k}(1-p)^{r}.\end{aligned}}} } } Because of this, negative iso distribution is
also known as gamma poisson (mixed) distribution. Negative isolytic distribution was originally derived as a limiting case of gamma poisson distribution. [19] The distribution of geometrically distributed random variables is random variables based on negative distributions with parameters r and p{ 0, 1, 2, ...} if supported, Yr has a geometric distribution that uses the parameters p ({0, 1, 2, ...}) r is the sum of the independent variables according to . As a result of the central limit cleanup, Yr (properly scaled and moved) is almost normal for r large enough. In addition, if the Bs
+r parameter s + r and 1 - p and isomi distribution are any of the following variables: Next Pr (Y r ≤ s) = 1 - I p (s + 1, r) = 1 - I p (s + r) - (r - 1), (r - 1 ) - (r - r - 1 ) - 1 ) = Pr ≥ (B + r ≤ R - 1 ) = Pr (after the S+r test, there is at least r success). {\Display Style {\Start{\##Pr (Y_{r}\leq s))/{}}=1-I_{p} (s+1,r)\\\[5pt]&amp;amp; {}=1-I_{p}(s+r)-(r-
1),\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\############################################5pt#################################################################################################################################################################################################################### {}=1\Pr (B_{s+r}\leq r-1)\\\\\\\\\
[5pt]&amp;amp; {}=\\\pr (B_{s+r}\geq r)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\at least }}r{\text{success}}}}.\End{Sort}} In this sense, negative iso-iso-like distribution is the reverse of the Isomie distribution. The sum of independent negative-isomially distributed random
variables r1 and r2 with the same value for parameter p is negative-binomially distributed at the same p, but uses the r-value r1 + r2. Negative isolytic distributions can be infinitely divided, that is, if Y has a negative isolytic distribution, for any positive integer n, the independently dispersed random variable Y1 exists, ..., whose sum is Yn, whose sum has the same distribution that Y has. Voice iso-isotic distribution represented by composite Poisson distribution NB (r,p) can be represented by composite Poisson distribution: Let{Yn, n ∈ N0} Independent and equally
distributed of random variables, each one having a logarithmic distribution log (p) with the probability mass function F (k; r, p) = - p k ln  (1 - p) and k ∈ N. In {\display style f (k;r,p)={\frac {-p^{k}{k\ln (1-p)}}},\qquad k\, {\mathbb {N} }}}}}} N becomes a random variable independent of the sequence and assumes that N has a poise distribution with an average θ = -r ln (1 - p). Then any sum X = ∑ n = 1 N {\display style X=\sum _{n=1}{n}Y_{n} is distributed NB(r,p). To prove this, we calculate the probability generation function GX of X, which is the composition of the probability
generation function GN and GY1. G N (z) = exp  (z - 1)) ) ), z ∈ R, {\display style G_ {N}(z)=\exp(\lambda(z-1)), \qquad z\in \math {R} }, } } } and G Y 1 (z) = ln  (1 - p z) ln  ( 1) | &lt; 1 p, {\Display Style G_{Y_{1}}(z)={\frac {\ln (1-pz)}}{\ln (1-p)}},\qquad |&lt;{\frac {1}{p}}} (z) = exp  (l)  (1 - p z) ln  (1 - p ) - 1 ) ) = exp  (ln  (1 - p z) - ln  (1 - p) ) = (1 p - 1 - p - p ) r | z | &lt; 1 p, {\Display Style {\Start{Sort}G_{X} (z)&amp;=G_{N} (G_{Y_{1}}}
(z))\\\\\\\\\===========================================================\\\\\\\\\\\\\\\\\\\\\\\\========================================================\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\=x=X=====================================================================================================================================================================================================================================================================================\biggl (}
{\frac {\ln (1-pz)}}{\ln (1-p)}}}-1{\biggr }{\\biggr]}\\\\\[]\\[]\\\[\\\\\bigl (}-r (\ln (1-pz)))-\ln (1-p))))))/{\\\bigr (}\\\\;[] 4pt]&amp;={={\biggl (}{\frac{1-p}{1-p z}{\biggr)}{\biggr,{r},\qquad |z|&lt;{\frac {1}{p}},\End{Sort}}} This is a probability generation function of the NB(r,p) distribution. The following table explains the four distributions related to the number of successes in the order of draws: the number of weightless distributions with no replacements, the number of isomial distributions, the ordered negatively distributed cathode distribution (a,b,0) of the distribution is a member of the
distribution, along with the Poisson and Vinmi distributions, all three of which are members of the Panjer distribution. They are also members of the natural index family. p Estimating statistical inference parameters for assumption p MVUE is unknown and time-determined experiments are performed that sampling will continue until r success is found. Sufficient statistics for the experiment are k, which is the number of failures. p In estimation Estimating, minimum distributed biasorp ^ = r - 1 r + k − 1 . {\Display Style {\Widehat {p}}={\\\frac {r-1}{r+k-1}}} Maximum Probability
Estimation p ~ = r + k, {\Display Style {\Widetilde {p}={\frac {r}{r}/k}}, but biased estimate. [20] The maximum probability estimater exists only for samples with sample variance. Than the sample average. [21] The probable function for N iid observations (k1, ..., kN) calculates the log possibility function L (r, p) = ∏ = 1 N F (k i; r, p) {\display style L (r,p)=\prod _{i=1}^{N}f (k_{i};r,p)\,\,\}}}}}}} (r, p) = ∑ = 1 N ln  (Γ (k i + r) ) - ∑ i = 1 N ln  (k i ! ) - N ln  (Γ) + + ∑ i = 1 N k i ln  (1 - p) + N r ln  (p) . {\디스플레이 스타일 \ell (r,p)==_{i=1}^{N}\ln(\감마(k_{i}+r))-
\__________k__________________________________________________________________________________________________________________________________________ -N\ln (\감마(r)))+\sum _{i=1}^{N}k_{i}\ln(1-p)+Nr\ln(p)}} 최대를 찾으려면 우리는 r및 p에 대하여 부분 파생 상품을 가지고 0에 동일하게 설정 : ∂ l (r, p) ∂ p = [ ∑ i = 1 N k i 1 p ] - N r 1 - p = 0 {\디스플레이 스타일 {\frac {\부분 \ell (r,p)}}}{부분 p}에 대해 }=왼쪽[\sum_{i=1}}=n}k_{i}\\frac {1}{p}}\오른쪽]-Nr{\frac {1}{1-p}=0} 및 ∂ l(r, p) ∂ r = [∑ i = 1 ψ N(k i + r] = N ψ (r) + N ln  (1 - p) = = 0 {\디스플레이 스타일
{\frac {\부분 \ell (r,p)}{\부분 r}}==왼쪽[\sum_{i=1}^{N}\psi (k_{i}+r)\오른쪽]-N\psi i (r)+N\ln(1-p)=0} 여기서 ψ (k) = Γ = (k) Γ ( k) {\displaystyle \psi (k)={\frac {\감마 (k)}}{\감마(k)}}}}}}}}}}}}디감마 기능이다. p에 대한 첫 번째 방정식 을 해결 : p = ∑ i = 1 N K i N r + ∑ i = 1 N k = 1 N k { \디스플레이 스타일 p =\frac {\sum _{i=1}k_{{{{nr+__{i=1}}^{N}k_{i}}} 두 번째 방정식에서 이것을 대체하는 것은 다음과 ∂ l (r, p) ∂ r = [∑ i = 1 ψ N (k i + r) ] - N ψ (r ) + N ln  (r r + ∑ i = 1 N k i / N ) = 0 {\디스플레이 스타일 {\frac {\부분 \ell (r,p)}{}부분 r}=좌측[\sum_{i=1}^{N}\psi (k_{i}+r)\오른쪽]]]]]-N\psi (r)+N\ln\왼쪽
({\frac{r}{r+\sum _{i=1}^{{N}k_{i}/N}\오른쪽)=0} 이 방정식은 닫힌 형태로 r에 대해 해결할 수 없습니다. 수치 용액이 원하는 경우 뉴턴의 방법과 같은 반복적인 기술을 사용할 수 있습니다. 또는 기대 극대화 알고리즘을 사용할 수 있습니다. [21] In the special case of integer latency in the occurrence and application Bernoulli process, the negative iso-like distribution is known as the Pascal distribution. A certain number of failures and probability of success in a series of independent and identical distributed Bernoulli tests. In the case of success probability p and k + r Bernoulli test, negative
isomical provides the probability of failure and k success and r failure in the last trial. In other words, the negative in distress distribution is the probability distribution of the number of successes before Rth failure in the Bernumiri process, which increases the probability of success in each test. Because the Bernoulli process is an individual time process, the number of tests, failures, and successes is an integer. Consider the following example: Assume we throw the die repeatedly, and consider 1 as a failure. The probability of success in each exam is 5/6. The number of
successes before the third failure belongs to {0, 1, 2, 3, ... } infinite sets. The number of successes is a negative variance random variable. When = 1 we can get the probability distribution of the first failure that occurs in the first failure (i.e. (k + 1)st test, which is a geometric distribution: f (k + r, p) = (1 - p) ↔ p k {\display style f (k;r,p)=(1-p))\c Excessively distributed Poisson negative inan distribution can be used as an alternative to the Poisson distribution, especially in the alternative parameterization described above. This is the same as the variance of the mean; therefore,
the Poisson distribution is not an appropriate model; the negative innan distribution has one or more parameters than poisson, so the second parameter can be used to adjust the variance independently of the mean; see the adversary of some scattering probability distribution; the application of this is in the annual number of tropical cyclones in the North Atlantic or the monthly six-month count of winter tropical cyclones through Europe. , which has a larger variance than the average. [22] [23] [24] In the case of modest overheating, this can produce results substantially
similar to the over-dispersed Poisson distribution. [25] [26] Negative insincerity distribution is also commonly used to model data in the form of isan sequence reading counts in high-throughput RNA and DNA sequencing experiments. [27] [28] [29] History This distribution was first studied by Montmort in 1713 and distributed the number of tests required to achieve a given number of successes in the experiment. [30] It was previously mentioned by Pascal. [31] Also a problem for coupon collectors Beta Negative Inan Distribution Expansion Negative Distribution Negative
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