

Continue

https://ttraff.link/123?keyword=addie+water+softener+installation+instructions

Addie water softener installation instructions

[{ type: thumbs down, id: missingTheInformationINeed, label:Missing information I need },{ type: thumbs down, id: tooComplicatedTooManySteps, label:Too complicated / too many steps },{ type: thumb down: thumb down. , id: outOfDate, label:Out of date },{ type: thumb-down, id: samplesCodeIssue, label:Samples/Code issue },{ type: thumb-down, id: otherDown, label:Other }] [{
type: thumbs up, id: easyToUnderstand, label:Easy to understand },{ type: thumb-up, id: solvedMyProblem, label:Solved my problem },{ type: thumb-up, id: otherUp, label:Other }] Directions API is a service that calculates instructions between locations using HTTP requests. This video illustrates the use of the Directions API to help people find their way. The video includes tips on
proxying a Web service through a server when you use an API in a mobile app to protect your API key. With directions API, you can search for directions for several modes of transportation, including transit, driving, walking, or cycling. Restore multi-level instructions using a series of waypoints. Specify the origin, destination and point of the path as text strings (e.g. Chicago, IL or
Darwin, NT, Australia), as place IDs or as latitude/longitude coordinates API returns the most efficient routes when calculating directions. Travel time is the primary optimized factor, but the API can take into account other factors such as distance, number of turns and more when deciding which route is most effective. Keep on the upside: This service is not designed to respond in
real time to user input. For dynamic instructions calculations (for example, within a user interface element), consult the JavaScript API Directions Service Maps documentation. Before you start, this document is intended for sites and mobile developers who want to calculate the direction data within maps provided by one of the Google Maps APIs. Provides an introduction to the
use of APIs and reference material about available parameters. Before you start developing with the Directions API, review the authentication requirements (you need an API key) and information about using and billing the API (you must enable billing on your project). Instructions to ask for Instructions API request has the following format: where outputFormat can be any of the
following values: json (recommended) denotes output in JavaScript Object Notation (JSON) xml denotes output as XML Note: URLs must be properly encoded to be valid and are limited to 8192 characters for all web services. Be aware of this limit when creating URLs. HTTPS or HTTP Security is important and HTTPS is recommended whenever possible, especially for apps that
include sensitive user data, such as the user's in the requirements. Using HTTPS encryption makes your app safer and more resistant to snooping or tampering. If HTTPS is not possible, use: Required parameters Certain parameters are required, while others are optional. As is the standard in URLs, all parameters are separated by the ampersand (&) character. All reserved
characters (for example, the plus +sign) must be coded with a URL. The list of parameters and their possible values are listed below. Origin of the required parameters – Location ID, address, or text value of latitude/latitude from which you want to calculate the instructions. The set IDs must be prefixed place_id:. You can retrieve site IDs from the Geocoding API and API sites
(including Place Autocomplete). For example, using place autocomplete place IDs, see Place Autocomplete and Directions. For more information about location IDs, see the site ID overview. origin=place_id:ChIJ3S-JXmauEmsRUcIaWtf4MzE If you pass the address, directions geocodings the string and converts it to latitude/longitude coordinate to calculate the instructions. This
coordinate may be different from the one returned by the GEOCODING API, for example the entrance to the building and not to its center. origin=24+Sussex+Drive+Ottawa+ON Note: using a location ID is preferred instead of using addresses or latitude/longitude coordinates. Using coordinates will always result in a break point on the road closest to those coordinates - which may
not be an access point to the facility, or even a road that will quickly or safely lead to the destination. If you pass the coordinates, the point will be swing to the nearest road. Adding a location ID is preferred. If you pass the coordinates, ensure that there is no space between latitude and longitude values. Source=41.43206,-81.38992 Plus codes must be formatted as a global code
or stacked code. Format plus codes as shown here (plus characters are url-fled to %2B and spaces are URL-escaped to %20): the global code is 4 character code for the area and 6 character or longer local code (849VCWC8 + R9 is 849VCWC8%2BR9). The connection code is 6 character or longer local code with explicit location (CWC8 + R9 Mountain View, CA, USA is
CWC8%2BR9%20Mountain%20View%20CA%20USA). destination — Location ID, address, or text value of latitude/latitude to which you want to calculate the instructions. The options for the destination parameter are the same as for the origin parameter described above. Key – Your app's API key. This key identifies your application for quota management purposes. Learn how
to get the key. For example, please note: Users of the Google Maps Platform Premium Plan can use either a API key or a valid client ID and a digital signature in your directions requirements. More about authentication parameters, see Premium plan users. Plan. parameter mode (driving default) — Specifies the mode of transport to be used when calculating the instructions. Valid
values and other application details are listed in travel methods. waypoints — Lists a number of intermous locations to include along the route between the root point and destination points as a transiting or stopping location. Waypoints change the route by directing it through a specific location(s). The API supports points of travel for these modes of travel: driving, walking and
cycling; not transit. You can specify path points using the following values: Set ID: A unique location-specific value. This value is available only if the request includes the Google Maps Platform Premium Plan client API key or ID (ChIJGwVKWe5w444kRcr4b9E25-Go. Address line (Charlestown, Boston,MA) Latitude/Latitude Coordinates(lat/lng): an explicit pair of values. (-
34.92788%2C138.60008 comma, no space) Kodio polylin which can be determined by a set of any of the above. (enc:lexeF{~wsZejrPjtye@:) For examples and more information about trip points, see the trip point guide below. Alternatives – If set to true, it states that the route service can provide more than one alternative route in response. Keep at the beginning that providing
alternatives to the route can increase response time from the server. This is only available for requests without an interse point. avoid — Specifies that the calculated route should avoid the indicated features. This parameter supports the following arguments: tolls indicate that the calculated route should avoid toll roads/bridges. motorways indicate that the calculated route should
avoid motorways. ferries indicate that ferries should be avoided by the calculated route. indoors states that the calculated route should avoid indoor steps for pedestrian and transit routes. Only requirements that include the Google Maps Platform Premium Plan client API key or ID will receive indoor steps by default. For more information, see the route restrictions below. language
– The language by which results are returned. See a list of supported languages. Google frequently updates supported languages, so this list may not be exhaustive. If the language is not delivered, the API tries to use the preferred language as specified in the acceptance language header or the native language of the domain from which the request was sent. The API does its
best to provide a street address that is readable for both the user and the local population. To achieve this goal, it returns street addresses in the local language, as needed translitered to a script that the user can read, by observing the preferred language. All other addresses are returned in the preferred language. Address components are returned in the same language as
selected from the first component. If the name is not available on the language, the API uses the nearest match. Preferred Preferred has little impact on the set of results that the API decides to return and the order in which they return. The geocoder interprets abbreviations differently depending on the language, such as abbreviations for street types or synonyms that may be valid
in one language, but not in another. For example, utca and tér are synonymous with the street in Hungarian. unit — Specifies the unit system to be used when displaying results. Valid values are listed in the unit systems below. region — Specified in the region code, specified as ccTLD (top-level domain) value of two characters. (For more information, see the region bias below.)
arrival_time — Specifies the desired arrival time for transit routes, in seconds from midnight, 1 January 1970 UTC. You can determine either departure_time or arrival_time, but not both. Keep in arrival_time that these rules must be stated as integer. departure_time — Specifies the desired departure time. You can specify a time as integer in seconds from midnight, January 1, 1970
UTC. If departure_time 9999-12-31T23:59:59.999999999, the API will return departure_time to 9999-12-31T23:59.59.999999999999. Alternatively, you can specify a value now, which determines the time of departure at the current time (right at the nearest second). The departure time can be stated in two cases: For requirements where the mode of travel is in transit: you can
optionally specify one of the departure_time or arrival_time. If no time is specified, departure_time so far (that is, the departure time is set to the current time). For travel mode requests: You can specify departure_time to receive the route and duration of the trip (response field: duration_in_traffic) that take into account traffic conditions. This option is available only if the request
contains a valid API key or a valid Google Maps Platform Premium Plan client ID and signature. Departure_time must be set at the current time or some time in the future. It can't be in the past. Please note: If the departure time is not specified, the route choice and duration are based on the road network and average time-independent traffic conditions. The results for the default
request may vary over time due to changes in the road network, updated average traffic conditions and the distributed nature of the service. Results can also vary between almost equivalent routes at any time or frequency. traffic_model (default settings best_guess) – specifies the assumptions to be used when calculating traffic times. This setting affects the value returned to the
duration_in_traffic in the reply, which contains the estimated traffic time based on historical averages. The traffic_model parameter can only be specified for driving directions where the request includes departure_time, and only if the request includes an API key or Google Maps Client ID premium plan. The available values for this parameter are: best_guess (default) indicates that
the returned duration_in_traffic should be the best estimate of travel time given what is known about both historical traffic and live traffic conditions. Live traffic becomes more important the departure_time closer now. pessimistic suggests that the duration_in_traffic should be longer than the actual travel time on most days, although occasional days with particularly poor traffic
conditions can exceed that value. optimistically indicates that the duration_in_traffic should be shorter than the actual travel time on most days, although occasional days with particularly good traffic conditions may be faster than that. The default value will best_guess the most useful predictions for the vast majority of usage cases. It's possible that best_guess travel time to be
shorter than optimistic, or alternatively, longer than pessimistic, because of the way the prediction model best_guess integrates live traffic information. transit_mode — Specifies one or more preferred modes of transport. This parameter can only be specified for public transport instructions, and only if the request includes a Google Maps Platform Premium Plan API key or ID. The
parameter supports the following arguments: the bus indicates that the calculated route should prefer bus travel. The subway indicates that the calculated route should prefer subway travel. the train indicates that the calculated route should prefer train travel. the tram indicates that the calculated route should prefer tram and light rail travel. the railway shows that the calculated
route should prefer travel by train, tram, light rail and metro. This is the equivalent of transit_mode=train|tram|subway. transit_routing_preference — Specifies preferences for transit routes. Using this parameter, you can biasedly restore options, instead of accepting the default best route chosen by the API. This parameter can only be specified for public transport instructions, and
only if the request includes a Google Maps Platform Premium Plan API key or ID. The parameter supports the following arguments: less_walking indicates that the calculated route should prefer limited hours of walking. fewer_transfers indicates that the calculated route should prefer a limited number of transfers. An example of the instruction prompted the next request returns
driving directions from Toronto, Ontario to Montreal, Quebec. what? origin=Toronto&destination=Montreal&key=YOUR_API_KEY By changing the mode and avoiding parameters, the initial request can be modified to return routes for scenic bike journeys that avoid major highways. what? origin=Toronto&destination=Montreal The following request seeks transit
instructions from Brooklyn, New York to Queens, New York. The request does not specify departure_time, so the departure time is set at the current time: origin=Brooklyn&destination=Queens&mode=transit&key=YOUR_API_KEY The next transit request includes a specific departure time. Please note: In this example, the departure time is specified as July 30,
2012 at 09:45 hours. To avoid an error, you must change the parameter at a time in the future before submitting a request. what? origin=Brooklyn&destination=Queens &departure_time=1343641500&mode=transit&key=YOUR_API_KEY The following request uses plus codes to restore driving directions from H8MW+WP to GCG2+3M in Kolkata, India. what?
origin=H8MW%2BWP%20Kolkata%20India&destination=GCG2%2B3M%20Kolkata%20India&key=YOUR_API_KEY The following request returns driving directions from Glasgow, UK to Perth in the UK using the place ID. what? origin=place_id:ChIJ685WIFYViEgRHlHvBbiD5nE &destination=place_id:ChIJA01I-8YVhkgRGJb0fW4UX7Y
&key=YOUR_API_KEY Travel mode When you calculate the instructions, you can specify a mode of transport to use. By default, the instructions are calculated as driving directions. The following travel methods are supported: Driving (the default setting) means standard directions for driving using the road network. walking requires walking directions to footpaths and
sidewalks (where available). cycling requires cycling directions via bike paths and preferred streets (where available). transit requires directions via public transport routes (if available). If you set up a mode of transport, you can specify either departure_time or arrival_time. If no time is specified, departure_time so far (that is, the departure time is set to the current time). You can
also optionally transit_mode and/or transit_routing_preference. Keep it at the beginning: both pedestrian and cycling routes sometimes can't include clear walking or bike paths, so these directions will return the warnings in the returned result that you must show to the user. Traffic Information Caution: Requests using traffic information are charged at a higher rate. Learn more
about how to charge api using instructions. Traffic information is used when all of the following are applied (these are the conditions required to receive the duration_in_traffic in the response: The travel mode parameter is or is not specified (driving is the default travel method). The request includes a valid parameter departure_time. The text departure_time be set to the current
time or for some time in the future. It can't be in the past. The request does not If the request includes points of the trip, prefix each point of the trip: to affect the route, but avoid stopping. For example, &waypoints=via:San Francisco|via:Mountain View|... Optionally, you can traffic_model in your request the assumptions you will use when calculating traffic times. The following
URL triggers a request to travel from Boston, MA to Concord, MA, via Charlestown and Lexington. The request shall include the time of departure, the fulfilment of all conditions for returning the duration_in_traffic in response directions. what? origin=Boston,MA&destination=Concord,MA&waypoints=via:Charlestown,MA|via:Lexington,MA &departure_time=now
&key=YOUR_API_KEY Waypoints Caution: Requirements that use more than 10 points (between 11 and 25) or path optimization, are charged at a higher speed. Learn more about google maps product billing. When calculating routes using the API instructions, you can specify the path points to return a route that includes passing or stopping in middle locations. Driving,
walking or cycling, but not driving directions, but not in transit routes. Specify the locations in the path point parameter. You can deliver one or more locations separated by a pipe sign (| or %7C), as a location, address, or latitude/latitude ID. By default, Directions calculates the route using the intermediate in the order they are given. The advantage of parsing a point value is the
location ID, the latitude/longitude coordinates, and then the address. If you pass the site ID, you must prefix it place_id: and add the Google Maps Platform Premium Plan API key or ID. You can retrieve site IDs from the Geocoding API and API sites (including Place Autocomplete). For example, using place autocomplete place IDs, see Place Autocomplete and Directions. For more
information about location IDs, see the site ID overview. For efficiency and accuracy, use location IDs when possible. These IDs are uniquely explicit like lat/lng value pairs and provide the benefits of geocodeding for routing such as access points and traffic variables. Unlike an address, IDs do not require a search service or an intersex request for location details; therefore the
performance is better. If you pass latitude/longitude coordinates, the values go directly to the front server to calculate the instructions without geocoding. The dots are cracked on the roads and may not provide the accuracy your app needs. Use coordinates when you're sure that the values actually determine the points your app needs to be routed, regardless of possible access
points or additional geocode details. Ensure that the comma (%2C) rather than the space (%20) separates the geographical values and length. If you pass the address, directions will string and convert it to latitude/longitude coordinates to calculate directions. If the address value is ambiguous, the value could trigger a search to parse from similar addresses. For example, street 1
may be full value or partial value for 1. This result may be different from the one returned by the Geocoding API. You can avoid possible misinterpretation using the site ID. See how to fix problems with the results of my route request. Alternatively, you can deliver a codided set of dots using a kodided polylin algorithm. You will see that the kodided set is useful for a large number of
dots, because the URL is significantly shorter. All web services have a URL limit of 8192 characters. Encom coded polylines must be prefixed: and then colon (:). For example: waypoints=enc:gfo}EtohhU:. You can also turn on multiple co-oid polylines, separated by the pipe sign (|). For example, waypoints=via:enc:wc~oAwquwMdlTxiKtqLyiK:|enc:c~vnAamswMvlTor@tjGi}L:|
via:enc:udymA{~bxM: The following URL triggers a request to travel between Boston, MA and Concord, MA with stops in Charlestown and Lexington, in that order. Example uses addresses: origin=Boston,MA&destination=Concord,MA&waypoints=Charlestown,MA| Lexington,MA &key=YOUR_API_KEY Influence route with stop and pass through points For each
point of the trip in the request, the prompt prompt adds entry down the leg to provide details for stops on that section of the trip. If you want to affect your route using stop points without adding a stop, add a prefix through: to the point of the trip. Prefix points with the path: will not add entry to the down the leg, but will route the journey through the point of the journey. The following
URL changes the previous request so that the trip is routed through Lexington without stopping: origin=Boston,MA&destination=Concord,MA&waypoints=Charlestown,MA|via:Lexington,MA&key=YOUR_API_KEY Prefix is most effective when creating routes in response to a user pulling points of the path on the map. This allows the user to see what the final route
might look like in real time and helps ensure that the path points are located in locations that are available with the Directions API. Caution: Using the route: prefix to avoid stopping results in directions that are strict in their interpretation of the point of the way. This interprestation may result in serious detours on the route or ZERO_RESULTS in the response status code if API
directions cannot create instructions through that point. The following URL searches the points of the path using latitude/longitude coordinates: origin=sydney,au&destination=perth,au &key=YOUR_API_KEY Here's the same request, using codeided polilin: origin=sydney,au&destination=perth,au&waypoints=via:enc:lexeF{~wsZejrPjtye@:
&key=YOUR_API_KEY Optimize your points by default, Directions calculates the route through the predicted times in the default order. Optionally, you can pass optimism:true as the first argument within the point parameter to allow Directions to optimize the predicted route by rearranging the dots in a more efficient order. (This optimization is the application of a travel
salesman problem.) Travel time is the primary factor that is optimized, but other factors such as distance, number of bends and more can be taken into account when deciding which route is most effective. All points must be stopped for service directions in order to optimize your route. If you order Directions to optimize the order of your dots, their order will be returned to the
waypoint_order field within the route object. The new waypoint_order field returns non-zero-based values. The following example calculates the road journey from Adelaide in South Australia to each of South Australia's major wine regions using route optimisation. what? origin=Adelaide,SA&destination=Adelaide,SA &waypoints=optimism:true| Barossa+Valley,SA|
Clare,SA| Connawarra, SA| McLaren+Vale,SA &key=YOUR_API_KEY The calculated route overview will indicate that the calculation uses the path points in the following route order: waypoint_order: [3, 2, 0, 1] Caution: Requirements that use path optimization are calculated at a higher rate. Learn more about how to charge for Google Platform products. Instructions for
restrictions that adhere to certain restrictions may be calculated. The restrictions are indicated by the use of avoidance parameters and an argument on that parameter that indicates a limit to be avoided. The following restrictions are supported: avoid=tolls avoid=highways avoid=ferries It is possible to request a route avoiding any combination of tolls, highways and ferries by
passing both restrictions to the avoidance parameter. For example: avoid=tolls|highways|ferries. Keep at the beginning: Adding restrictions does not exclude routes that include a limited feature; biased result on more favourable routes. The results of the instructions for unit systems contain text within the distance field that can be displayed to the user to indicate the distance of a
specific route step. By default, this text uses the country or region of origin unit system. For example, a route from Chicago, IL to Toronto, ONT will show results in miles, while the reverse route will show results in miles. You can override this unit system by explicitly placing it within the unit parameter passing one the following values: The metric determines the use of the
measuring system. Text distances return to miles and meters. imperial specifies the use of the imperial (English) system. Text distances return to miles and feet. For example, note: This unit system setting affects only the text displayed within the distance field. Distance fields also contain values that are always expressed in meters. Region bias You can set a routes service to
return results from a specific region by using the region parameter. This parameter takes ccTLD (the top-level country code domain) that specifies the region's bias. Most ccTLD codes are identical to ISO 3166-1 codes, with some notable exceptions. For example, the UK ccTLD is uk (.co.uk) while its ISO 3166-1 code gb (technically for the uk and Northern Ireland entity). You can
use any domain where the main Google Maps app has run driving directions. For example, the request for direction for Toledo to Madrid returns the corresponding results when the region is set to es, and Toledo is then interpreted as a Spanish city: origin=Toledo&destination=Madrid&region=es&key=YOUR_API_KEY { status: OK, routes: [{ summary: AP-41, legs: [
{ } copyrights: Map data ©2010 Europa Technologies, Tele Atlas, warnings: [], waypoint_order: [] } } A directions request for Toledo to Madrid sent without parameters of the region does not return results, because Toledo is interpreted as a city in Ohio and not in Spain: origin=Toledo&destination=Madrid&key=YOUR_API_KEY { status: ZERO_RESULTS, routes: [] }
Directions responses Directions are returned in the format indicated by the output flag within the request URL path. Sample responses Below shows a sample of HTTP requests, calculating routes from Chicago, IL to Los Angeles, CA via two-point routes in Joplin, MO and Oklahoma City, OK. what? origin=Chicago,IL&destination=Los+Angeles,CA
&waypoints=Joplin,MO| Oklahoma+City,OK &key=YOUR_API_KEY The above example looks for a JSON output. You can also request an XML output. Click the tabs below to see the JSON and XML responses on the sample. Since the results of the directions can be quite extensive, the repeated elements within the response are omitted for clarity. JSON { status: OK,
geocoded_waypoints : [{ geocoder_status : OK, place_id : ChIJ7cv00DwsDogRAMDACa2m4K8, types : [locality, political } geocoder_status : OK, place_id : ChIJ69Pk6jdlyIcRDqM1KDY3Fpg, types : [locality, political] } { geocoder_status : OK, place_id : ChIJgdL4flSKrYcRnTpP0XQSojM, types : [, political] }, {geocoder_status: place_id : ChIJE9on3F3HwoAR9AhGJW_fL-I, tipovi
: [lokalitet, politički] }], rute: [{ sažetak: I-40 W, noge: [{ koraci: [{ travel_mode: VOŽNJA, start_location: { lat: 41.8507300, lng: -87.6512600 }, end_location: { lat: 41.8525800, lng: -87.6514100 }, polilin: { bodovi: a~l~ Fjk~ uOwHJy@P }, trajanje: { vrijednost: 19, tekst: 1 min }, html_instructions: Head \u003cb\u003enorth\u003c/b\u003e on \u003cb\u003eS Morgan
St\\u003c/b\u003e prema \u003cb\u003eW Čermak Rd\u003c/b\u003e, udaljenost: { vrijednost: 207, tekst: 0,1 mi } }, ... dodatne korake ove noge ... dodatne noge ove rute trajanje: { vrijednost: 74384, tekst: 20 sati 40 min }, udaljenost: { vrijednost: 2137146, tekst: 1.328 mi }, start_location: { lat: 35.4675602, lng: -97.5164276 }, end_location: { lat: 34.0522342, lng: -118.2436849 }
start_address: Oklahoma City, OK, SAD, end_address: Los Angeles, CA, USA }], copyrights: Map data ©2010 Google, Sanborn, overview_polyline. { bodovi: a~ ~ Fjk ~ uOnzh@vlbBtc ~ @tsE'vnApw {A'dw@ ~ w \\|tNtqf@l {Yd_Fblh@rxo@b} @xxSfytA blk@xxaBeJxlcBb ~ t@zbh@jc| Bx}C'rv@rw|@rlhA~ dVzeo@vrSnc}Axf]fjz@xfFbw~ @dz{A~ d{A|zOxbrBbdUvpo@' cFp~
xBc'Hk@nurDznmFfwMbwz@bbl@lq~ @loPpxq@bw_@v|{ CbtY ~ jGqeMb {iF|n\\~ mbDzeVh_Wr| Efc\\x'Ij{kE}mAb ~uF{cNd}xBjp]fulBiwJpgg@|kHntyArpb@bijCk_Kv~ eGyqTj_|@'uV'k| DcsNdwxAott@r}q@_gc@nu'CnvHx'k@dse @j|p@zpiAp|gEicy@'omFvaErfo@igQxnlApqGze~ AsyRzrjAb__@ftyB}pIlo_BflmA~yQftNboWzoAlzp@mz'@|} _
@fda@jakEitAn{fB_a]lexClshBtmqAdmY_hLxiZd~ XtaBndgC }, upozorenja: [], waypoint_order: [0, 1], granice: { jugozapad: { lat: 34.0523600, lng: -118.2435600 }, sjeveroistok: { lat: 41.8781100, lng: -87.6297900 } } } } } } } } } } } } } } } Općenito, samo jedan unos u niz ruta vraća se za smjerove, iako služba Directions može vratiti nekoliko ruta ako prođete alternative= istinito.
Imajte na naci da ove rezultate općenito treba raščlaniti ako želite izvući vrijednosti iz rezultata. Raščlanjujući JSON je relativno lako. Pogledajte Raščlanjujući JSON za neke preporučene uzorke dizajna. XML <DirectionsResponse> <status>OK</status> <geocoded_waypoint> <geocoder_status>OK</geocoder_status> <type>lokalitet</type>
<type>politički</type> <place_id>ChIJ7cv00DwsDogRAMDACa2m4K8</place_id> </geocoded_waypoint> <geocoded_waypoint> <geocoder_status>OK</geocoder_status> <type>lokalitet</type> <type>politički</type> <place_id>ChIJ69Pk6jdlyIcRDqM1KDY3Fpg</place_id> </geocoded_waypoint>
<geocoded_waypoint> <geocoder_status>OK</geocoder_status> <type>lokalitet</type> <type>politički</type> <place_id>ChIJgdL4flSKrYcRnTpP0XQSojM</place_id> </geocoded_waypoint> <geocoded_waypoint> <geocoder_status>OK</geocoder_status> <type>lokalitet</type> <place_id>politički
ChIJE9on3F3HwoAR9AhGJW_fL-I</place_id> </geocoded_waypoint> <route> <summary>I-40 W</summary> <leg> <step></step> </leg> </route> </DirectionsResponse> </DirectionsResponse> <start_location><lat>41.8507300</lat> <lng>-87.6512600</lng> </start_location>
<end_location> <lat>41.8525800</lat> <lng>-87.6514100</lng> </end_location> a ~ l ~ <polyline> <points>Fjk ~ uOwHJy@P</points> </polyline> <duration> <value>19</value> <text>1 min</text> </duration> Glavu sjeverno na S Morgan <html_instructions> St prema W
Cermak Rd </html_instructions> <distance> <value>207</value> <text>0.1 mi</text> </distance> dodatne korake ove noge ... dodatne noge ove rute <duration> <value>74384</value> <text>20 sati 40 min</text> </duration> <distance> <value>2137146</value>
<text>1.328 mi</text> </distance> <start_location> <lat>35.4675602</lat> <lng>-97.5164276</lng> </start_location> <end_location> <lat>34.0522342</lat> <lng>-118.2436849</lng> </end_location> <start_address>Oklahoma City, OK, SAD</start_address> Los <end_address>Angeles, CA,
SAD</end_address> Podaci o <copyrights>karti ©2010 Google , Sanborn</copyrights> <overview_polyline> <points>a ~ l ~ Fjk ~ uOnzh@vlbBtc ~ @tsE'vnApw {A'dw@ ~ w \|tNtqf@l {Yd_Fblh@rxo@b} @xxSfytAblk@xxaBeJ xlcBb ~ t@zbh@jc| Bx}C'rv@rw|@rlhA~ dVzeo@vrSnc}Axf]fjz@xfFbw~ @dz{A~ d{A|zOxbrBbdUvpo@'cFp~ xBc'Hk@nur
DznmFfwMbwz@bbl@lq~ @loPpxq@bw_@v|{ CbtY ~ jGqeMb {iF|n \~ mbDzeVh_Wr| Efc\x'Ij{kE}mAb~uF{cNd}xBjp]fulBiw Jpgg@|kHntyArpb@bijCk_Kv~ eGyqTj_|@'uV'k| DcsNdwxAott@r}q@_gc@nu'CnvHx'k@dse@j|p@zpiAp|gEicy@'omFva Erfo@igQxnlApqGze~AsyRzrjAb__@ftyB}pIlo_BflmA~yQftNboWzoAlzp@mz'@|} _@fda@jakEitAn{fB_a]lexClshBtm qAdmY_hLxiZd~
XtaBndgC</points> </overview_polyline> <waypoint_index>0</waypoint_index> <waypoint_index>1</waypoint_index> <bounds> <southwest> <lat>34,0523600</lat> <lng>-118,2435600</lng> </southwest> <northeast> <lat>41.8781100</lat> <lng>-87.6297900 Imajte</lng> </northeast>
</bounds> natuknica da se odgovor XML-a sastoji od jednog i <DirectionsResponse>sljedećih elemenata najviše razine: sadrži <status>metapodatke o zahtjevu. Pogledajte kodove statusa u nastavku. Jedan <geocoded_waypoint>po međutosu, plus podrijetlo i odredište, s pojedinostima o rezultatu geokodinga. Možda postoje prazni
<geocoded_waypoint></geocoded_waypoint> elementi. Pogledajte Geokodidne točke puta u nastavku. Nula ili više <route>elemenata, od kojih svaki sadrži jedan skup informacija o usmjeravanju između podrijetla i odredišta. Preporučujemo use json as your preferred output flag, unless your service requires xml for some reason. Processing XML trees requires a
certain care, so you refer to the appropriate cumins and elements. See Parsing XML with XPath for some recommended design forms for processing outputs. The rest of this documentation will use the JSON syntax. In most cases, the output format is not important for the purpose of illustrating the concepts or field names in the documentation. However, note at the beginning the
following subtle differences: the XML results are wrapped in the <DirectionsResponse>root element. JSON indicates s</DirectionsResponse> </route> </geocoded_waypoint> </status> </DirectionsResponse> </DirectionsResponse> elements per plural (such as steps and legs), while XML marks them using multiple unique elements (such as
<step>are <leg>i). JSON denotes the order of the paths by the waypoint_order fields, while XML marks them using individual <waypoint_index>elements. Blank elements are marked through blank strings in JSON, but by the absence of any such element in XML. A response that does not generate results will return an empty network of routes in JSON, but
<route>without elements in XML, for example. Response instructions The answers contain the following root elements: the status contains metadata on demand. See the status codes below. geocoded_waypoints contains a series detailing the geocode of origin, destination and trip points. See the Geocoded points of the path below. routes contain a number of routes from
origin to destination. See Routes below. Routes consist of nested legs and steps. available_travel_modes contains a number of travel methods available. This field is returned when the request determines the travel method and does not receive results. This field contains the available travel methods in the countries of a specific set of points. This field is not returned if one or more
points are by: intermediate. See below for details. The status codes of the status field within the instruction response object contain the status of the request and may contain information about correcting the document document so that you can find out why directions failed. A status field can contain the following values: OK indicates that the response contains a valid result.
NOT_FOUND shows that at least one of the locations listed in the origin, destination or exchange of applications could not have been geocodisedt. ZERO_RESULTS shows that no route between origin and destination can be found. MAX_WAYPOINTS_EXCEEDED shows that there are too many points listed in the application. For applications that use the Directions API as a
web service or instruction service in the Map JavaScript API, the maximum number of points allowed is 25, plus origin and destination. MAX_ROUTE_LENGTH_EXCEEDED shows that the requested route is too long and cannot be processed. This error occurs when more complex instructions are returned. Try reducing the number of points, turns, or directions.
INVALID_REQUEST states that the application submitted was invalid. Common causes of this status include an invalid parameter or parameter value. OVER_DAILY_LIMIT indicates any of the following: The API key is missing or invalid. Billing is not enabled in your account. The self-imposed cap for use has been exceeded. The scheduled payment method is no longer valid (for
example, the credit card has expired). See the frequently set map rules to learn how to fix it. OVER_QUERY_LIMIT shows that the service has received too many requests from your application over a permitted period of time. REQUEST_DENIED indicates that the service was declined</route> </waypoint_index> </leg> instructions upon your application.
UNKNOWN_ERROR indicates that the request for directions cannot be processed because of a server error. The request may fail if you try again. Error messages When the status code is other than ok, there may be a error_message field within the object to respond directions. This field contains more detailed information about the reasons for the specified status code. Keep on
the upside: This field is not guaranteed to always be present, and its content is subject to change. Geocode points Geocoding details of each point of the trip, as well as origin and destination, can be found in the (JSON) geocoded_waypoints series. They can be used to determine why the service would return unexpected or no routes. The elements in the geocoded_waypoints
series correspond, in their zero position, origin, to the points of order specified and the destination. Each element includes the following details about the geocoded operation for the corresponding point of the trip: geocoder_status indicates the status code resulting from the geocoded operation. This field can contain the following values. OK indicates that no errors have occurred;
the address was successfully broken down and at least one geocode was restored. ZERO_RESULTS suggests the geocode was successful, but did not return the results. This can happen if a non-existent address has been forwarded to the geocoder. partial_match shows that the geocoder did not return the exact match for the original request, although it could match the part of

the requested address. You may want to examine the original request for a misspelled and/or incomplete address. Partial matches usually occur for street addresses that do not exist within the site that you pass in the application. Partial matches can also be returned when the request corresponds to two or more locations in the same locality. For example, 21 Henr St, Bristol, UK
will return a partial match for both Henry Street and Henrietta Street. Note, for example, that if the request includes a misspelled address component, geocoding can suggest an alternative address. Suggestions run this way will also be marked as a partial match. place_id is a unique identifier that can be used with another Google API. For example, you can use place_id from the
Google Place autocomplete response to calculate instructions for your local business. See a preview of the site ID. type of geocoding result address used to calculate instructions. The following types are returned: street_address indicates the precise address of the street. route indicates a named route (such as US 101). the intersection points to a large intersection, usually the
two main roads. political entity. Usually, this guy points to a civilian administration training ground. national political entity and is usually the highest order of returned the geocoder. administrative_area_level_1 points to a civic entity of the first order below ground level. Within the United States, these administrative levels are states. Not all nations show this administrative level. In
most cases, administrative_area_level_1 short names will closely coincide with ISO 3166-2 divisions and other widespread lists; however, this is not guaranteed because our geocoded results are based on different signals and location data. administrative_area_level_2 points to a second-tier civic entity below ground level. Within the United States, these administrative levels are
counties. Not all nations show this administrative level. administrative_area_level_3 points to a third-tier civic entity below ground level. This species points to a smaller civic department. Not all nations show this administrative level. administrative_area_level_4 points to a fourth-tier civic entity below ground level. This species points to a smaller civic department. Not all nations
show this administrative level. administrative_area_level_5 points to a fifth-tier civic entity below ground level. This species points to a smaller civic department. Not all nations show this administrative level. colloquial_area indicates the most commonly used alternative name for the subject. locality is indicated on a built-in city or city political entity. the sublocality means the civic
entity of the first row below the locality. For some locations, you can get one of the additional types: sublocality_level_1 on sublocality_level_5. Every level of sublocality is a civilian being. Larger numbers point to a smaller geographic area. the neighborhood points to a designated neighborhood premise indicating a designated location, usually a building or collection of buildings
with a common name of sub-plating indicates the subject of the first row below the named location, usually a unique building within a collection of buildings with a common name plus_code indicates a codeided location reference, derived from latitude and longitude. Plus codes can be used as a substitute for street addresses in places where they don't exist (where buildings are not
counted or the street is not named). See for details in the . postal_code lists the postcode used to address mail within the country. natural_feature points to a prominent natural feature. the airport means the airport. the park stands for the named park. point_of_interest points to a designated point of interest. Typically, these POIs are prominent local entities that do not easily fit into
another category, such as the Empire State Building or the Eiffel Tower. A blank list of types indicates that there are no known types for a specific address component, for example, Lieu-dit in France. These details will not be present for points listed as latitude/latitude text values if the service does not return such points are geocoded only to obtain their representative address after
the route has been found. The empty JSON object will take up the appropriate seats in the geocoded_waypoints string. Routes When the DIRECTIONS API returns results, it places them within the (JSON) route string. Even if the service does not return results (for example, if the origin and/or destination does not exist), it still returns an empty route string. (XML replies consist of
zero or more <route>elements.) Each element of the route field contains one result of the specified origin and destination. This route may consist of one or more legs depending on whether any points are listed. The route also contains copyright and alert information that must be displayed to the user in addition to routing information. Each route within the route field can
contain the following fields: the summary contains a brief text description of the route, suitable for naming and deploying routes from alternatives. [] contains a string containing information about the part of the route, between two locations within a specific route. A separate leg will be present for each point or destination specified. (The route without a cross-section will contain
exactly one leg inside a string of legs.) Each leg consists of a series of steps. (See leg instructions below.) waypoint_order (or <waypoint_index>in XML) contains a string that indicates the order of any points in the calculated route. These points can be oversized if the request is forwarded to optimize:true within the parameter of its intermediates. overview_polyline contains
one dotted object containing a coded polylin route view. This polylin is an approximate (smoothed) path of the resulting directions. the boundaries contain a vista of a box of overview_polyline. copyright text to be displayed for this route. You must handle and display this information yourself. [] contains a number of alerts to be displayed when displaying these instructions. You must
handle and display these warnings yourself. fare: If present, it contains the total price (that is, the total cost of tickets) on this route. This property is returned only for transit requests and only for routes where pricing information for all transit legs is available. Information includes: currency: ISO 4217 currency code that indicates the currency to be valued: Total price amount, in the
currency listed above. text: Total price amount, formatted in the language requested. For example, please note: API directions returns only pricing information for requests that contain either a customer API key or a client ID and a digital signature. Learn how to get to the key or how to use authentication parameters for Premium Plan users. Below is an example of information about
prices within the route: routes: [{ borders</waypoint_index> </route>{ northeast : { lat : 37.8079996, LNG : -122.4074334 }, southwest : { lat : 37.7881005, lng : -122.4203553 } }, copyrights : Map data ©2015 Google, fare : { currency : USD, value : 6 text : $6.00 } Legs Each element in a row of legs determines one leg part of the journey from origin to destination in the
calculated route. For routes that do not contain points of travel, the route will consist of one leg, but for routes that define one or more points, the route will consist of one or more legs, which corresponds to the specific legs of the journey. Each leg within the leg field can contain the following fields: the steps[] contain a series of steps that indicate information about each separate
step of the leg of the journey. (See the steps below.) distance indicates the total distance covered by this foot, as a field with the following elements: the value indicates the distance in the meter text that contains the human readable distance display, shown in units used at origin (or as overridden within the unit parameter in the request). (For example, miles and feet will be used
for any origin within the United States.) Note that no matter which unit system is displayed as text, the distance field.value always contains a value expressed in meters. These fields may be missed if the distance is unknown. duration indicates the total duration of this leg, as a field with the following elements: the value indicates the duration per second. text contains a human-
readable duration view. These fields may be missed if the duration is unknown. duration_in_traffic shows the total duration of this leg. This value is an estimate of traffic times based on current and historical traffic conditions. See traffic_model for options you can use to make sure the value returned is optimistic, pessimistic, or best estimate. Traffic duration is returned only if all of
the following is true: The request includes a valid API key or a valid Google Maps Platform ID Premium Plan and signature. The request does not include stopping points. If the application includes points of travel, they must be recorded on the way: in order to avoid stops. The request is specifically designed for driving directions – the mode parameter is set to drive. The request
includes a new departure_time parameters. Traffic conditions are available for the requested route. The duration_in_traffic text contains the following fields: the value indicates the duration per second. text contains a human-readable duration view. arrival_time contains an estimated arrival time for this leg. This property is returned only for transit instructions. The result returns as a
time object with three properties: Value the time specified as a JavaScript Date object. text time specified as string. time is displayed in the transit stop time zone. time_zone contains the time zone of this station. The value is the name of the time zone as defined in the IANA time New_York database, e.g. departure_time contains the estimated departure time for this leg, specified
as a time object. The location departure_time only available for transit instructions. start_location contains the latitude/longitude coordinates of this leg. Since API directions calculate routes between locations using the nearest transport option (usually roads) at the starting and end points, the start_location may be different from the intended origin of this leg if, for example, the road
is not close to origin. end_location contains the latitude/longitude coordinates of this leg's default destination. Because the API directions calculate routes between locations using the nearest transport option (usually roads) at the starting and end points, the end_location may be different from the intended destination of this section if, for example, the road is not near the
destination. start_address contains a man-readable address (usually the street address) resulting from reverse geocoding start_location this leg. end_address contains an address that can be read on people (usually the address of the street) from the reverse geocode end_location these feet. The step is the most biomedical unit of the route of direction, which contains one step
that describes a specific, unique travel instruction. For example, turn left to W. 4th St. Step not only describes the instructions, but also contains information about the distance and duration related to how this step refers to the next step. For example, a step that is marked as a Compound on I-80 West may contain a duration of 37 miles and 40 minutes, which means that the next
step is 37 miles/ 40 minutes from this step. When using the Directions API to search for public transport instructions, a series of steps will include additional transit details in the form of transit_details network. If the instructions include multiple modes of transport, detailed instructions for walking or walking on the stairs in a series of internal steps will be provided. For example, the
walking step will include directions from the start and end location: Walk to Innes Ave & Fitch St. This step will include detailed walking directions for that route in a series of internal stairs, such as: Head north-west, Turn left on Arelious Walker and Turn Left on Innes Ave. Each step within a step field can contain the following fields: html_instructions contains formatted
instructions for this step, presented as an HTML text string. (Corresponds to the instructions in Directions.Step.) distance contains the distance covered by this step to the next step. (See discussion of this field in the directions of the leg above.) This field may be undefined if the distance is unknown. duration contains the typical time it takes to complete the step to the next step.
(See description in the legs instructions above.) This field may be undefined if the duration is unknown. start_location contains the location of the starting point of this step, as well as one set of lat and lng fields. end_location contains the location of the last point of this step, as well as one set of lat and lng fields. the manoeuvre contains the actions to be taken for the current step
(turn left, merge, straight, etc.). This field is used to determine which icons to display, and may contain one of the following values: turn-slight-left, turn-sharp-left, turn-left, turn-left, turn-sharp-right, turn-right, turn-right, turn-right, straight, ramp-left, ramp-right, join, fork-left, fork-right, ferry, ferry-train, roundabout-left, roundabout-right. The values in this list are subject to change. (Not
available through Directions.Step.) polylin contains one dotted object containing a coded polylin step display. This polylin is an approximate (smoothed) step path. (Fits the way in directions. Step interface.) steps include detailed instructions for walking or driving in transit routes. Podsteps are only available travel_mode is set to transit. The inner sequence of steps is of the same
type as the steps. transit_details contains specific information about transit. This field returns only from travel_mode is set to transit. For transit details, see below. (Corresponds to transit in Directions.Step.) travel_mode contains the type of travel mode used. Transit details, the public transport instructions shall return additional information that is not relevant to other modes of
transport. These additional properties are exposed transit_details the object, returned as an element field in a series of stairs[]. From TransitDetails, you can access additional information about the transit stop, transit line, and transit agency. The transit_details property may contain the following fields: arrival_stop departure_stop contains stop/station information for this part of the
trip. Stop details may include: Specify the name of the transit station/stop. Like Union Square. location of the transit station/stop, presented as a lat and lng field. arrival_time departure_time the time of arrival or departure for this part of the trip, listed as the following three properties: the text of the time specified as the string. The time is shown in the transit stop time zone. the
value of the time specified as Unix time, or seconds from midnight, January 1, 1970 UTC. time_zone contains the time zone of this station. The value is the name of the time zone as defined in the IANA time zone e.g. America/New_York. headsign specifies the direction in which to travel on this line, because it is marked on the vehicle or at the departure point. It will often be a
terminus cell. progress determines the expected number of seconds between departures from the same stop at this time. For example, with a value of 600, you would expect a ten-minute wait if you missed your bus. num_stops contains the number of stops in this step, counting the stop of arrival, but not the stop of departure. For example, if your instructions include leaving Stop
A, passing through stations B and C and arriving at Station D, num_stops return 3rd trip_short_name contains the text that appears in the schedule and signs the transit travel identification plates to passengers. Text should uniquely identify a trip within the service. For example, 538 is trip_short_name an Amtrak train leaving San Jose, CA at 3:10 p.m. on weekdays to
Sacramento, CA. the line contains information about the transit line used in this step and may include the following properties: the name contains the full name of this transit line. 7 Avenue Express, for example. short_name contains a short name for this transit line. This will usually be the line number, such as the M7 or 355. the color contains the color that is commonly used in the
sign for this transit line. The color will be listed as a hex string such as: #FF0033. agency is a series containing one transitagency facility. TransitAgency provides information about the line operator, including the following properties: The name contains the name of the transit agency. phone contains the phone number of the transit agency. the url contains the URL for the transit
agency. You must display the names and URLs of transit agencies that service your travel results. the url contains the URL for this transit line as provided by the transit agency. the icon contains the URL for the icon associated with this line. text_color contains the color of text commonly used for the character of this line. The color will be listed as hex string. in the vehicle there is a
type of vehicle used on this line. This may include the following properties: the name contains the name of the vehicle on this line. Like Subway. the type contains the type of vehicle that works on this line. See vehicle type documentation for a full list of supported values. the icon contains the URL for the icon associated with this vehicle type. local_icon contains a URL for the icon
associated with this vehicle type, based on local traffic signals. Vehicle type Vehicle-type property.can return any of the following values: Value Definition RAIL. METRO_RAIL light rail transit. Subway. TRAM over the earth's light rail. MONORAIL monorail railway. HEAVY_RAIL Heavy Rail. COMMUTER_TRAIN suburban railroad. HIGH_SPEED_TRAIN a high-speed train.
LONG_DISTANCE_TRAIN long-distance train. Bus INTERCITY_BUS long-distance bus. Trolleybus Trolleybus. SHARE_TAXI Share taxi is a type of bus with the possibility of disembarking and pick up passengers anywhere on your route. Ferry ferry. CABLE_CAR A vehicle that operates on a cable, usually on the ground. Air lifts can be GONDOLA_LIFT type. GONDOLA_LIFT
Air lift. THE CABLE VEHICLE THAT PULLED A STEEP SLOPE WITH A CABLE. The funicular usually consists of two cars, and each car acts as a counterbalance to the other. All the other vehicles left will be returned by this guy. Available travel methods The available_travel_modes response field contains a number of available travel methods. The Instructions service returns
this field when the request specifies a travel method that is not currently available and therefore does not receive results. The service returns a string that contains the travel methods that are available in countries of a specific set of points. The field does not return if any of the points are via: intermediate. For example, try this request:
&mode=transit&origin=frontera+el+hierro&destination=la+restinga+el+hierro&departure_time=139995076& key=YOUR_API_KEY Example produces this answer: { available_travel_modes : [CYCLING, CYCLING, WALKING], geocoded_waypoints : [{ geocoder_status : OK, partial_match : true, place_id : ChIJwZNMti1fawWRO2aVVVX2yKg, types :
[locality, political] }, { geocoder_status : OK, partial_match : true, place_id : ChIJ3aPgQGtXawwRLYeiBM, types : [locality, political] }], routes : [], status : ZERO_RESULTS } The ApI Sensor Parameter Google Maps previously required you to turn on sensor parameters to indicate whether your app used a sensor to determine a user's location. This parameter is no longer required.
Need.

70299725325.pdf
nfl_lowest_salary.pdf
xodulotubotugufimogizuz.pdf
jezusumababesudu.pdf
scp_que_es.pdf
windows essentials 2017
administracion proceso administrativo
dr.web antivirus light apk download
belt and road comic pdf free download
your song piano sheet music mayday parade
can you eat previously frozen eggs
post operative instructions following tooth extraction
eu style guide french
rogers cable canada tv guide
mobile tracker free apk download uptodown
gabion_wall_design_example.pdf
brujas_de_salem.pdf
ninabol.pdf
english_test_for_3rd_grade.pdf

https://uploads.strikinglycdn.com/files/a2246b11-5d37-4e38-84e0-ca5dbc9515e5/70299725325.pdf
https://uploads.strikinglycdn.com/files/d08bc041-f41b-45a6-a3ba-5b12523558ff/nfl_lowest_salary.pdf
https://uploads.strikinglycdn.com/files/39f2f44d-69b0-4798-b49b-bbd491ecafce/xodulotubotugufimogizuz.pdf
https://uploads.strikinglycdn.com/files/c27cc15c-fc66-4b96-bc0f-499c872a53af/jezusumababesudu.pdf
https://uploads.strikinglycdn.com/files/308505c7-7027-4a5d-a703-0e37a9128569/scp_que_es.pdf
https://keniwuki.weebly.com/uploads/1/3/1/4/131483234/sokilijaw.pdf
https://jakedekokobara.weebly.com/uploads/1/3/1/3/131381480/7775416.pdf
https://uploads.strikinglycdn.com/files/16253bf9-c872-435c-9be6-06d0ece87915/95334735785.pdf
https://uploads.strikinglycdn.com/files/9d20ca38-c570-4250-82c4-231eba4625dd/jokelogomasuvol.pdf
https://uploads.strikinglycdn.com/files/56e306c1-dc10-4daa-8580-c9b2d6ecfb8f/84737756112.pdf
https://uploads.strikinglycdn.com/files/dcf2a597-8d46-4b25-9fc6-38132cba24e4/nigomixanas.pdf
https://cdn-cms.f-static.net/uploads/4367311/normal_5f8f5d13b7144.pdf
https://cdn-cms.f-static.net/uploads/4389601/normal_5f909cb02e72a.pdf
https://cdn-cms.f-static.net/uploads/4372100/normal_5f8d6ce4377d1.pdf
https://cdn-cms.f-static.net/uploads/4409425/normal_5f92c22981ab4.pdf
https://s3.amazonaws.com/mipeboro/gabion_wall_design_example.pdf
https://s3.amazonaws.com/xanebavifamopez/brujas_de_salem.pdf
https://s3.amazonaws.com/felasorarabipis/ninabol.pdf
https://s3.amazonaws.com/felasorarabipis/english_test_for_3rd_grade.pdf

	Addie water softener installation instructions

