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Process dynamics and control 4th edition pdf

The new 4th edition of Seborg's Process Dynamics Control provides full local coverage for process control courses in the chemical engineering curriculum, highlighting how process control and related process modeling and optimization areas are essential for the development of high-value products. The main objective of this new version
is to describe modern techniques for control procedures, with an emphasis on complex systems necessary for the development, design and operation of modern processing units. Control process trainers can cover the basic material and also have the flexibility to include advanced themes. Chapter 2 2.1 (a) Total mass balance: d (rV) =
w1 + w2 − w3 dt (1) Energy balance: C d ev (T3 − Tref) ο ο ο = w1C (T1 − Tref ) + w2C (T2 − Tref ) dt − w3C (T3 − Tref ) (2) Because r = constant and V = constant, constant and V = constant, Eq. 1 becomes: w3 = w1 + w2 b) (3) From Eq. 2, substitution Eq. 3 rCV d (T3 − Tref ) dT = rCV 3= w1C (T1 − Tref ) + w2C (T2 − Tref ) dt dt − (
w1 + w2 ) C (T 3 − Tref ) (4) C and Tref constants can be cancelled: rV dT3 = w1T1 + w2T2 − ( w1 + w2 )T3 dt The simplified model now consists only of Eq. 5. Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp and Francis J. Doyle III 2-1 (5)
Degrees of freedom for the simplified model: Parameters : r, V Variables : w1, w2, T1, T2, T3 NE = 1 NV = 5 So, NF = 5 – 1 = 4 Because w1, w2, T1 and T2 are determined by upstream units , we assume that time functions are known: w1 = w1(t) w2 = w2 (t) T1 = T1(t) T2 = T2(t) Thus, NF is reduced to 0. 2.2 Energy balance: Cp d ο a (T
− Tref) ο ο = wC p (Ti − Tref ) − wC p (T − Tref ) − UAs (T − Ta ) + Q dt Simplification dT = wC p Ti − wC p T − UAs (T − Ta ) + Q dt dT pVC p = wC p (Ti − T ) − UAs (T − Ta ) + Q dt pVC p b) T increases if Ti increases and vice versa. T decreases if w increases and vice versa if (Ti – T) &lt; 0. In other words, if q &gt; UAs(T-Ta), the
content is heated, and T &gt;Ti. 2-2 2.3 a) Mass balances: rA1 dh1 = w1 − w2 − w3 dt (1) dh2 = w2 dt (2) rA2 Flow ratios: Let P1 be the pressure at the bottom of tank 1. Allow P2 to be the pressure at the bottom of tank 2. Let pa be the pressure of the environment. w2 = Then P1 − P2 pg (h1 − h2) = R2 g c R2 (3) P1 − Pa pg h1 = R3 g c
R3 (4) w3 = b) Seven parameters: r, A1, A2, g, gc, R2, R3 Five variables : h1, h2, w1, w2, w3 Four equations So NF = 5 – 4 = 1 1 input = w1 (defined function of time) 4 outputs = h1, h2, w2 , w3 2-3 2.4 Suppose constant liquid density, r . The mass balance for the tank is d (rAh + m g) dt = r(qi − q) Because r, A and mg are stable, this
becomes A dh = qi − q dt (1) The square root ratio for flow through the control valve is  - rgh − Pa Pa q = C v  Pg + gc   1/ 2 (2) From the ideal gas law, Pg = (m g/ M) RT (3) A(H − h) where T is the absolute temperature of the gas. Equation 1 gives the model of unstable state when replacing q with Eq. 2 and Pg from Eq. 3: 1/ 2 ο (mg /
M) RT r gh = qi − Cv  + − Pa ο dt gc  A( H − h) ( 4) Because the model contains Pa, the function of the system is not independent of Pa. For an open system Pg = Pa and Eq. 2 indicates that the system is independent of Pa. 2-4 2.5 a) For the linear flow characteristics of the valve, Pd − P1 P − P2 , wb = 1 , Ra R b The mass balances for
wave tanks wa = dm1 = wa − wb , dt wc = P2 − Pf Rc dm2 = wb − wc dt (1) (2) where m1 and m2 are the masses gas tanks 1 and 2 Respectively. If the ideal gas law applies, then P1V1 = m1 RT1, M P2V2 = m2 RT2 M (3) where M is the molecular weight of the gas T1 and T2 are the temperatures in the wave tanks. Substituting m1 and
m2 from Eq. 3 to Eq. 2 and noting that V1, T1, V2 and T2 are stable, the V2 M dP2 V1M dP1 = wa − wb and = wb − wc RT2 dt RT1 dt (4) The dynamic model consists of Eqs. 1 and 4. b) For adiabatic operation, Eq. 3 is replaced by γ V V  P1  1  = P2  2  m2  m1  or  P1V1 γ m1 =   C     γ   = C , a constant  1/ γ and  P2V2
γ m2 =   C Substituting Eq. 6 into Eq. 2 gives, 1 γ  V1 γ   C      1/ γ P1 (1− γ ) / γ 2-5 dP1 = wa − wb dt     (5) 1/ γ (6) 1 γ  V2 γ   C      1/ γ P2 (1− γ ) / γ dP2 = wb − wc dt as the new dynamic model. If the ideal gas law were not valid, one would use an appropriate equation of the state instead of Eq. 3. 2.6 a) Cases: 1. Each
apartment is mixed perfectly. 2. r and C are fixed. 3. No heat loss in the environment. Compartment 1: Overall balance (No accumulation of mass): 0 = ρq − ρq1 thus q1 = q (1) Energy balance (No change in volume): dT1 ρqC (Ti − T1 ) − UA(T1 − T2 ) V1ρC = dt (2) Compartment 2: Overall balance: 0 = ρq1 − ρq2 thus q2 = q1= q (3)
Energy balance: dT2 V2ρC = ρqC (T1 − T2 ) + UA(T1 − T2 ) − U c Ac (T2 − Tc ) dt b) Eight parameters: ρ, V1, V2, C, U, A, Uc, Ac Five variables: Ti, T1, T2, q, Tc Two equations: (2) and (4) 2-6 (4) Thus NF = 5 – 2 = 3 2 outputs = T1, T2 3 inputs = Ti, Tc, q (specify as functions of t) c) Three new variables: ci, c1, c2 (concentration of
species A). Two new equations: The remaining material components in each apartment. c1 and c2 are new outputs. ci must be a known function of time. 2.7 As in section 2.4.2, there are two equations for this system: dV 1 ( wi − w) = dt r wi dT Q = (Ti − T) + dt V r5 Results: (a) Since w is determined by hydrostatic forces, we can replace
this variable in terms of tank volume, as in 2.4.5 2.4.5 3. dV 1  V =  wi − Cv  dt r  A  wi dT Q = (Ti − T) + dt rV rVC This leaves us with the following: V , T , wi , Ti , Q 4 parameters: C , r , Cv , A 2 equations The degrees of freedom are 5 − 2 = 3 . To make sure the system is fixed, we have: 2 output variables: T , V 2-7 2 manipulated
variables: Q, wi 1 variable disturbance: Ti (b) In this part, two controllers have been added to the system. Each controller provides an additional equation. Also, the flow out of the tank is now a manipulated variable regulated by the controller. So we have 4 parameters: C , r , Tsp , Vsp 6 variables: V , T , wi , Ti , Q, w 4 equations 2 . To
determine the two degrees of freedom, we Freedom degrees are 6 − 4 = set the variables as follows: 2 output variables: T , V 2 manipulated variables (defined by the controller equations): Q, w 2 disturbances: Ti , wi 2.8 Additional hypotheses: (i) Density of liquid, r, and density of refrigerant, rJ, are constant. (ii) The specific heat of the
liquid, C, and refrigerant, CJ, is constant. Because V is stable, the mass balance for the tank is: r dV = q F − q = 0 ; so q = qF dt Energy balance for tank: rVC dT 0.8 = q F rC (TF − T) − Kq J A(T − TJ) dt (1) Energy balance for jacket: r J VJ C J d TJ dt = q J r J C J (Ti − TJ) + Kq J 0.8 A(T − TJ) (2) where A is the heat transfer area (in ft2)
between the liquid process and the refrigerant. 2-8 Eqs.1 and 2 are the dynamic model for the system. 2.9 Suppose the food contains only A and B, and no C. The remaining ingredients for A, B, C beyond the reactor give. dc A = qi c Ai − qc A − Vk1e − E1 / RT c A dt (1) dcB = qi cBi − qcB + V (k1e − E1 / RT c A − k2e − E2 / RT cB ) d t
(2) dcC = −qcC + Vk2e − E2 / RT cb dt (3) V V A total mass balance above the jacket indicates that qc = qci because the volume of refrigerant in the jacket and the density of the refrigerant are constant. Energy balance for the reactor: d (Vc A M A S A + VcB M B S B + VcC M C SC ) T  = ( qi c Ai M A S A + qi cBi M B S B ) (Ti − T ) dt
(4) −UA(T − Tc ) + (−∆H1 )Vk1e− E1 / RT c A + (−∆H 2 )Vk2e− E2 / RT cB where MA, MB, MC are molecular weights of A, B, and C, respectively SA, SB, SC are specific heats of A, B, and C. U is the overall heat transfer coefficient A is the surface area of heat transfer Energy balance for the jacket: dTc ρ j S jV= ρ j S j qci (Tci − Tc ) +
UA(T − Tc ) j dt where : rj, Sj is density and special heat of the refrigerant. Vj is the volume of refrigerant in the jacket. Eqs. 1 - 5 represent the dynamic model for the system. 2-9 (5) 2.10 The plots should appear as shown below: Notice that the functions are good only for t = 0 to t = 18, which is fully drained. The function is blown up
because the volume function is negative. Negative. 2.11 a) Note that the only retention equation required to find h is a total mass balance: dm d (rAh) dh w1 w2 − w = = rA =+ dt dt dt Dt Valve equation: w = C v′ pg h = Cv h gc where C v v′ pg gc (1) (2) (3) Replacing the valve equation in the mass balance, dh 1 = ( w1 + − C v h ) dt rA (4)
Fixed state model: 0 = w1 + w2 − C v h w1 + w2 2.0 + 1.2 3.2 kg/s = = = 2.13 1/2 1.5 2.25 m h b) C = v c) Feeder control 2-11 (5) Rearrangement 2,5 2,5 5 to get the feedforward controller ratio (FF), w2 = C v hR − w1 where hR = 2.25 m w2 = (2.13) (1.5) − w1 = 3.2 − w1 (6) Note that Eq. 6, 2014 , for a value w1 = 2.0, gives w2 = 3.2 –
1.2 = 2.0 kg/s which is the desired value. If the actual FF controller follows the relationship, w2 = 3.2 − 1.1w1 (flow transmitter 10% higher), w2 will change as soon as the FF controller is activated, w2 = 3.2 –1.1 (2.0) = 3.2 – 2.2 = 1.0 kg/s (instead of the correct value, 1.2 kg/s) Then C v h = 2.13 h = 2.0 + 1.0 or h= 3 = 1.408 and h = 1.983
m (instead of 2.25 m) 2.13 Error in desired level = 2.25 − 1.983 × 100% = 11.9% 2.25 2-12 Sensitivity does not look very bad in the sense that a 10% error in the flow measurement gives ~ 12% error at the desired level. Before this conclusion, however, you should check how well the operating FF controller works for a change to w1 (e.g.,
D w1 = 0.4 kg/s). 2.12 (a) Tank model (normal operation): dh = w1 + w2 − w3 dt p (2) 2 A= p= 3.14 m 2 4 rA (1800)(3.14) (Below the leakage point) dh = 120 + 100 − 200 = 20 dt 20 dh = = 0.007962 m /min dt (800)(3.14) Leak point reach time (h = 1 m) = 125.6 min. b) Leak tank model and w1 , w2 , w3 constant: rA dh =20 − d q4 =20 −
r(0.025) h − 1 = 20 − 20 h − 1 , h ≥ 1 dt To check for overflow, someone can just find the hm level at which dh/ dt = 0. This is the maximum value of the layer when no overflow occurs. 0 = 20 − 20 hm − 1 or hm = 2 m So there is no overflow for leakage that occurs because hm &lt; 2.25 m. 2-13 2.13 Process model Total material balance:
rAT dh = w1 + w2 − w3 = w1 + w2 − C v h dt (1) Component: rAT d (hx3 ) = w1 x1 + w2 x 2 − w3 x3 dt rAT h dx3 dh + rAT x3 = w1 x1 + w2 x 2 − w3 x3 dt dt Replacement for dh/dt (Eq. 1) rAT h dx3 + x3 ( w1 + w2 − w3 ) = w1 x1 + w2 x 2 − w3 x3 dt rAT h dx3 = w1 ( x1 − x3 ) + w2 ( x 2 − x3 ) dt or a) dx3 1 [w1 ( x1 − x3 ) + w2 ( x2 − x3 )]
= dt rAT h (2) (3) In initial stable condition , w3 = w1 + w2 = 120 + 100 = 220 Kg/min 220 = 166.3 Cv = 1.75 b) If x1 suddenly changes from 0.5 to 0.6 without changing the flow rates, then the level remains constant and Eq.3 can be solved in detail or numerically to find the time to achieve 99% of the x3 response. From the material
balance, the final value x3 = 0.555. Then dx3 1 = [120(0.6 − x3 ) + 100(0.5 − x3 )] dt (800)(1.75)p 2-14 = 1 [(72 + − 220 x3 )] )] = 0,027738 − 0,050020x3 Ενσωμάτωση, x3 f ∫ x3 o t dx3 = dt 0,027738 − 0,050020 x3 ∫0 όπου x3o=0,5 και x3f =0,555 – (0,555)(0,01) = 0,549 Επίλυση, t = 47,42 λεπτά γ) Εάν το w1 αλλάξει σε 100 kg/min χωρίς
να αλλοιώνεται καμία άλλη μεταβλητή εισόδου, τότε x3 δεν θα αλλάξει και Eq. 1 μπορεί να λυθεί για να βρει το χρόνο για να επιτευχθεί το 99% της απάντησης h. Από το ισοζύγιο υλικών, η τελική τιμή της στάθμης της δεξαμενής είναι h =1.446 m. 800π dh = 100 + 100 − Cv h dt 1  dh 200 − 166,3 h = dt 800π    = 0,079577 − 0,066169 h
όπου ho =1,75 και hf =1,446 + (1,446)(0,01) = 1,460 Με τη χρήση της εντολής MATLAB ode45 , t = 122.79 minutes The arithmetic solution of the ode is shown in the Figure. S2.13 2-15 1.8 1.7 h(m) 1.6 1.5 1.4 0 50 100 150 200 time (min) 250 300 Figure S2.13. Numerical solution of the ode for part c) d) In this case, both h and x3 will
change the functions of time. Therefore, both Eqs. 1 and 3 should be resolved at the same time. Δεδομένου ότι η συγκέντρωση δεν εμφανίζεται στο Eq. 1, δεν θα περιμέναμε καμία επίδραση στην απάντηση h. α) Το δυναμικό μοντέλο για τη χημειοστάτη δίνεται από: 2,14 dX = Vrg − FX dt ή dX F = rg −   X dt V  (1) Προϊόν: V dP = Vrp
− FP dt ή dP F = rp −   P dt V   (2) Υποστρώματος: V κύτταρα: V dS 1 = F (S f − S) − Vrg dt YX / S ή 1 1 dS  F  rg − rP =  ( S f − S ) − YX / S YP / S dt  V  β) Σε σταθερή κατάσταση, 2-16 (3) τότε, dX =0 dt ∴ rg = DX μ X = DX ∴ D= μ (4) Μια απλή στρατηγική ανάδρασης μπορεί να εφαρμοστεί όπου ο ρυθμός ανάπτυξης ελέγχεται
με το χειρισμό του ρυθμού ροής μάζας , F, so that the F/V remains stable. c) Flushing occurs if dX/dt is negative for a long time. i.e., rg − DX &lt; 0 or D&gt;m So if the D &gt; m cells will be flushed. d) In a stable state, the dynamic model given by Eqs. 1, 2 and 3 becomes: 0 = rg - DX DX = rg (5) 0 = rp - DP DP = rp (6) 0 = DD SSff − SS −
YY 1 XX/SS rrgg (7) from Eq. 5, DX = rg (8) From Eq. 7 rg = Y X / S ( S f − S ) D (9) Replacement Eq. 9 to Eq. 8, DX = Y X / S ( S f − S ) D (10) From Eq. 4 S = DK S mmax − D 2-17 Replacing these two equations in Eq. 10,  DK S = DX YX / S  S f − D m D − max   (11) For Yx/s = 0.5, Sf = 10, Ks = 1, X = 2.75, μmax = 0.2, the
following plot can be produced based on Eq. 11. Figure S2.14. Steady-state DX cell production rate as a function of dilution rate D. From figure S2.14, leaching occurs in D = 0.18 h-1, while maximum output is displayed in D = 0.14 h-1. Notice that maximum and rinsing points are dangerously close to each other, so special attention
should be taken when increasing cell productivity by increasing the dilution rate. 2-18 2.15 a) We can assume that r and h are about constant. The dynamic model is given by: rd = − dM = kAc s dt (1) ότι: M = ρV ∴ dM dV dV dt dt (2) dr d DV = (2p) =A dt dt dt Substitution (3) in (2) and then in (1), V = pr 2 h − rA ∴ dr = kAc s dt −r ∴ (3) dr =
kc s dt Integration, r ∫r dr = − o kcs t dt r ∫0 r (t) = ro − ∴ kc s t r (4) Finally, M = rV = rxr 2 and then kc  M (t) = r ro − s r  b) t   2 The time required to reduce the radius of the pill r by 90% is given by Eq. 4: 0.1ro = ro − kc s t r ∴ Therefore, t = 54 minutes . 2-19 t= 0.9f r (0.9)(0.4)(1.2) = = 54 minutes kc s (0.016)(0.5) 2.16 For V = constant
and F = 0, the simplified dynamic model is: S dX = rg = μ max X Ks + S dt S dP X = rp = YP / X m max Ks + S dt 1 1 dS rP =− rg − YP / X dt YX / S Substituting numeric values: dX SX = 0.2 dt 1+ S dP SX = (0.2)(0,2) 1+ S dt dS SX = 0.2 dt 1+ S ‧ 1 0.2 ο − 0.5 − 0.1 ο Using MATLAB, this system of differential equations can be solved.
The time to achieve a conversion of 90% of S is t = 22.15 h. Figure S2.16. Dynamic fed-batch bioreat reaction behavior. 2-20 2.17 (a) Using a simple volume balance, for the system when the drain is closed (q = 0) AA ddd ddd = qq1 (1) Resolving this ODEON with the given initial state gives a height that increases at a rate of 0.25 ft/min.
suppose a time constant in a linear 3-minute transfer mode, so that a constant state is essentially achieved. (3 &lt; t &lt; 18). Suppose the process returns to its previous stable state exponentially, reaching 63.2% of the response in three minutes. 2-21 (c) the input rate is doubled for 6 minutes (18 &lt; t &lt; 24) The height should be
increased exponentially towards a new constant state value twice that of the constant state value in Part b), but it should be obvious that the height does not reach this new constant state value in t = 24 minutes.. The new steady state will be 1 ft. (d) the input rate is returned to its original value for 16 minutes (24 &lt; t &lt; 40) 2-22 The
graph should show an exponential decrease in the previous constant state of 0.5 ft. The starting value should coincide with the final value from part c). Putting all the charts together will look like this: 2-23 2.18 Parameters (determined by the design process): m, C, me, Ce, he, Ae. CVs: TV and Te. Input variables (disorder): w, Ti. Input
variables (manipulated): Q. Degrees of freedom = (11-6) (number of variables) – 2 (number of equations) = 3 The three input variables (w, Ti, Q) are assigned and the resulting system has zero degrees of freedom. 2-24 2.19 (a) First we simulate a step change in the steam flow rate from 0.033 to 0.045 m3/s. The resulting plots of xD and
xB are presented below. Plot xD, xB and V versus time to change step to V from 0.033 to 0.045 m3/s. Looking at the resulting data, we can find the constant state values of xD xD xB before and after the step change in V. Start End Change xD 0.85 0.73 -0.12 xB 0.15 0.0050 -0.145 (b) Next we simulate a step change in feed composition
(zF) from 0.5 to 0.55. Note that the steam flow rate, V, is still set to 0.045 m3/s. 2-25 Figure: Plot of xD, xB, and zF versus time for a step change in zF from 0.5 to 0.55 Looking at the resulting data, we can find the constant state values of xD and xB before and after the step change in zF. Start End Change xD 0.73 0.80 +0.066 xB 0.0050
0.0068 +0.0018 (c) Increase V causes xD and xB to decrease, while zF growth causes both xD and xB to increase. The size of the result is larger for the V change than for the zF change. When you change V, xB changes faster than xD. 2-26 2.20 (a) First we simulate a step change in fuel gas purity (FG_pur) from 1 to 0.95. The resulting
oxygen output concentration (C_O2) and hydrocarbon output temperature (T_HC) are shown below. Picture: Plot C_O2, T_HC and FG_pur for a step change in FG_pur from 1 to 0.95. By looking at the resulting data, we can find the constant state values of C_O2 and T_HC before and after the step change in the FG_pur. Start Final
Change C_O2 0.92 1.06 0.14 T_HC 609 595 -14 (b) Then simulate a gradual change in the hydrocarbon flow rate (F_HC_sp) from 0.035 to 0.0385. Note that the fuel gas purity, FG_pur, is still set at 0.95. 2-27 Figure: Plot of C_O2, T_HC, and F_HC_sp versus time for a step change in F_HC_sp from .035 to 0.0385. Looking at the
resulting data, we can find the constant state values of C_O2 and T_HC before and after the step change in F_HC_sp. Start Final Change C_O2 1.06 1.06 0 T_HC 595 572 -23 (c) Decrease FG_pur causes C_O2 to increase while T_HC decreases. The increase in F_HC_sp causes T_HC to decrease while C_O2 remains the same. The
change in T_HC occurs faster when you change F_HC_sp than when you change FG_pur. 2-28 2.21 The key to this problem is to solve the mass balance of the tank in each part. Mass balance: d ( r Ah = ) r qi − r qo dt - r (density) and A (tank cross section) are constant, therefore: dh A = qi − qo dt - The problem determines qo is linearly
related to the height of the tank qo = 1 h R dh 1 A = qi − h dt R - Next, we can receive R (valve constant) from the steady state information in the problem dh = 0 at constant state dt 0= qi − 0= 2 − ∴ - 1 h R 1 (1) R 1 = 2 R = 0.5 R ft 2 minutes In addition, we can find that 2 -29 = = t AR ( 4 )  = 1 2 minutes 2 Part A dh = qi − qo dt (Mass
Balance) 4 dh =2 dt (Separate ODEON) 1 ∫ dh = ∫ 2 dt 1 h(t) = t +C 2 h(t) = 1 t +1 2 h(0) = 1 0≤t 0 Taking transformation of the input function, a constant, gives Ci (s ) ‧ ci s so that sVC (s) + qC (s) = q ci s or C (s) = Split numerator and denominator with q (s) = ci V  οs ο1 s ‧q  use transformation pair #3 #3 =V/q) 3-21 qci ( sv )
q)s q − t   c(t) = c i ‧1 − e V  ‧  Using matlab, the concentration response is shown in Fig. S3.18. (See point V = 2 m3, ci=50 Kg/m3 and q = 0.4 m3/min) 50 45 40 35 c(t) 30 25 20 15 10 5 0 0 5 10 15 20 25 30 Time scheme S3.18. Reactor sewage current concentration response. 3.19 a) Take the Laplace conversion of each term,
bearing in mind that all initial conditions are zero: s 2Y − sy (0) − y '(0) ο 5SY − 5 y (0) ο Y ‧ 8sU − 8u (0) u s 2Y • 5sY ο Y ο U (8s ο 1) U (s) ‧ 1 s Y (s 2 ο 5s ο 1) ‧ Y ‧ 8s ο 1 s 8s ο 1 s (s 5s 1) 2 Now they use symbolic mathematical software (ex. Mathematica) to resolve for y(t). ReverseLaplaceTransform[(8*s+1)/(s*(s^2+5*s+1)), s,t]
3-22 5- 21 5- 21 − t − t 1 2 g[t_]:= ‧ −21e − 11 21e 2 − 21e 41 ο ο 42    Plot[g[t],{t ,0,100},AxesLabel,{time,Y},PlotRange,{0,100},{0 ,2}}] 21 −5 t 2 11 21e 21 −5 t 2 y 4 3 2 1 t 0 0 2 4 6 8 10 Figure S3.19a: Tank level response to change in unit flow rate. b) Specify the time at which y(t) reaches the maximum amount as tmax. This
moment occurs when y′(t)=0. Solve this time using Mathematica and find that tmax = 0.877 and y (tmax)=1.558. Therefore, the tank will not overflow. (c) Now find the general solution for any input step size, M (the solution is stated in this case as YM(s) and yM(t) for clarity). The input U is M/s. U(s) ‧ M s YM (s 2 ο 5s 1) ‧ YM ‧ M (8s 1)
s M (8s 1) ‧ MY s (s 2 ο 5s 1) YM is the previous Y, multiplied by the size of the step, M. M. M. Since M is a constant, taking the inverse Transformation Laplace gives: yM (t) ‧ My(t) Now solve the equation: 3-23 yM (tmax) ‧ 2.5 ‧ me (tmax) ‧ M (1,558) M ‧ 2,5 ‧ 1,605 1,558 The maximum step change in the flow rate in the tank
that will not overflow the tank is 1,605. y 4 3 2 1 t 0 0 2 4 6 8 10 Figure S3.19b: Tank level response to a change in flow rate of 1,605 steps. 3.20 (a) Given the fixed volumes, the total balances in the three tanks indicate that the flow rate from each tank is equal to the remaining q For the tracer in each tank; V1 dc1 ‧ q (ci − c1 ) dt V2 dc2
‧ q (c1 − c 2 ) dt V3 dc3 ‧ q (c2 − c3 ) dt 3-24 b) The laplace conversion of the above equations and the elimination of C1 (s) and C2 (s) gives  q  q   q    ‧    ‧ q / V  ‧  ‧1 ο q / V2 ο ο V3  C (s) ο s q / V1 οs ο q / V2 οs ο q / V3 ‧ i From the ci (t) ‧ ‧ (t) 1. Ci(s) ‧ 1 V1 ‧ V2 ‧ V3 ‧ V ‧3 ‧1 ‧2
(q / V) 3 C3 (s) ‧ ο 3 2 (s ο q / V) (s ) q / V ) (s ( q / V ) ( s ) q / V )3 c3 (t) ‧ ‧1e](q /V)t ο ‧2te](q /V)t ο ο 3t 2e−(q /V)t 2. V1 μ V2 μ V3 μ V1 c3 (t) ‧ 4e (c) − (q /V1 )t ο ο 5e −( q /V2 )t ο ο 6e −( q /V3 )t Yes, tracer can be calculated by measuring c3 (t),  tracer quantity =  qc3 (t)dt , which can be evaluated numerically 0 3.21 Start
with the Laplace version of equations from exercise 13.20:  q  q  q  ‧   ‧ V1  ‧ V2  ‧ V3  C3 (s) ‧ C (s) ο q / V1 οs ο q / V2 οs ο q / V3 ο i From V1=V2=V3, this equation is reduced to: 3  q ‧  ‧ ‧  V C3 (s) ‧ ‧  3 Ci (s) οs ο q /V ο (1) 3-25, where ci(t) is a pulse of size A and width tw. A pulse can
be described by the sum of the two step functions. The first will be a step function of size A at the time 0. The second will be a step function of -A at t = tw. ci i i t ) ‧ AS (t) − AS (t − t w )  1 − e − tw s  A − tw s − e ‧ A ‧ (2)  s ‧ s  Now substitute Equation (2) in equation (1). For simplicity's sake, set a new variable f=q/V. Ci (s) ‧
A ο f ο (1 − e−tw s) 3 C3 (s) ‧ s οs ο f ο Now use a symbolic math software to find the reverse Laplace, giving c3(t). The solution is formulated as a function of t, f, A and tw. Then, for example, we design c3(t) for f=1/20, A=10, and tw=1. 3 In Mathematics, take the inverse Laplace transformation: ReverseLaplaceTransform[A ∗ f^3 ∗ (1 −
Exp[−tw ∗ s])/(s ∗ (s + f)^3) , t] The solution: c3(t) = 1/2 A(e −ft (−f 2 + 2e ft − 2ft − f 2 t 2 ) − e(−t+tw) (−2 + 2e f(t−tw) − 2f(t − tw) − f 2 (t − tw)2 )HeavisideThes[t − tw]) Set the function by parameters: g[t_, f_, A_, tw_] 1 ≔ A(e −ft (−2 + 2e ft − 2ft − f 2 t 2 ) − e f(−t+tw) (−2 2 + 2e f(t−tw) − 2f(t − tw) − f 2 (t − tw)2 )HeavisideTheta[t − tw]) ,
draw the concentration over time, assuming f=1/20, A=10, and tw=1. Design[g[t, 1/20, 10.1], {t, 0.200}, AxesLabel → {hour, C3}] 3-26 C3 0.12 0.10 0.08 0.06 0.04 0.02 time 50 100 150 200 Figure S3.21: Diagram c3 over time in response to pulse in ci width 10 and width 1, with f=1/20. 3.22 Solve this problem by using a symbolic software
program such as Mathematica. The following scenario will solve the problem (note that only 4 of the 5 possible initial conditions for y and its derivatives are included, otherwise the problem is overspecified). DSolve[{y''[x] + 16 ∗ y'''[x] + 86 ∗ y''[x] + 176 ∗ y′[x] + 105 ∗ y[x] = = 1, y[0] == 0, y′[0] == 0, y''[0] == 0, y'''[0] == 0}, y[x], x] Running
this script will give the result: {{y[x] → e −7x (−1 + e x )4 (5 + 20e x + 29e 2x + 16e 3x ) }} 1680 Use the Expand[ ] command to extend this solution to its individual terms. 1 e e −5x e −3x e −x {{y[x] → + − − }} 105 336 80 48 48 If desired, fractions can be accessed as decimal places: y(t) ‧ 0.003e −7t − 0.0125 e −5t 0.021e −3t − 0.021e −t
0.01 3-27 Chapter 4 © 4.1 Y(s) d ‧ U (s) bs c a) K gain can be achieved by setting s = 0 d K ‧ c Alternatively, the transport function can be placed in the standard fixed form of profit/time by dividing the numerator and denominator by c: d b Y (s) K , where K ‧ and ο . c u(s) οs ο 1 b) To determine the delimitation of the output response,
consider a gradual input of size M. Then use U (S) = M/s and Y (s) ‧ K M ‧ s From Table 3.1, the step response is: y(t) ‧ KM (1 − e--t /) ) From inspection, this response will be delimited only if &gt; 0, or equivalently, only if b/c &gt; 0. 4.2 (a) (b) (c) K=3 ο=10 We use the Final Value Theorem to find the value of y(t) when t-. 12e − s Y
(s) s (10 s 1) sY (s) ‧ 12e − s (10 s 1) 12e − s ‧ 12 s 0 (10 s 1) lim From the Final Value Theorem, y(t) = 12 when t- d) [Type here] y(t) = 12(1--e](t-1)/10), then y(10) = 12(1-e-9/10) = 7.12 4-1 [Type here] 7.12/12=0.593. e) Reuse the final value theorem. 3e  s (1  e  s ) Y (s)  (10 s  1) s 3e  s (1  e  s ) sY ( s )  (10 s 
1) 3e  s (1  e  s ) 3(1  1) lim  0 s 0 (10 s  1) 1 From the Final Value Theorem, y(t) = 0 when t f) 3e  s Y (s)  1 (10 s  1) 3se  s sY ( s )  (10 s  1) 3se  s lim 0 s  0 (10 s  1) From the Final Value Theorem, y(t)= 0 when t g) Y (s)  3e  s 10 30e  s  (10 s  1) ( s 2  4) (10 s  1)( s 2  4) then
 10  (10t 1)  1 y (t )  30 S (t  1)  e  (sin(2(t  1))  20 cos(2(t − 1)))  802 ‧ 401  The sinusoidal input produces a sinusoidal output and y(t) has no limit when t-. These solutions can be verified using mathematical software such as Mathematica or Simulink. 4-2 y 12 y 10 0.25 8 0.20 6 0.15 4 0.10 2 0.05 10 20 30 40 50
time 10 Fig. S4.2a. Exit for Parts (c) and (d). 20 30 40 50 times Fig. S4.2b. Production for part e). y 0.30 y 0.25 2 0.20 0.15 1 0.10 0.05 10 10 20 30 40 50 20 30 40 50 50 time 1 Fig. S4.2c. Production for part f). Image. S4.2d. Production for part g). 4.3 The transfer function for the pressure transmitter is given by, Pm(s) 1 ‧ P (s) 10s 1
(1) and P(s) ‧ 15 / s to change step from 35 to 50 psi. The replacement (1) and rearrangement gives: 1 15 m (s) ‧ 10s ο 1 s From point #13 in table 3.1, the step answer is given by: Pm (t) ‧ 15 (1 − e --t / 10 ) (2) Let ta be the moment when the sound alarm. Then pm (ta) ‧ 45 − 35 ‧ 10 psi (3) Replacement (3) and t = ta in
(2) and resolution gives ta = 11s. So the alarm will sound 11 after 1:30 p.m. 4-3 4.4 From Exercise 4.2, Y(s) 3e − s ‧ U(s) 10s 1 Rearrangement, Y(s) [10s 1] ‧ 3e − sU(s) (2) Take his L-1 (2), 10 dy ο y ‧ 3 u (t − 1) dt (3) Take his L (3) for y (0)=4, 10[ sY ( s ) − 4] ο Y(s) ‧ 3e − sU (s ) Substitute U(s) ‧ 2 / s and rearrange to give, 10sY-
40 +Y= Y (10 s 1) ‧ 6 − s 6e − s ‧ 40 s Partial fraction extension: Y(s) ‧ ea-- s 6 40 s (10 s 1) (10 s 1) a2 6 ‧ 1 s (10 s) s 10 s 1 Find 1 : Multiplies by s and set ‧ 0 ‧ ‧ 1 ‧ 6 Find ‧ 2 : Multiplies by 10s ο 1 and sets ‧ −0.1 ‧ 2 ‧ 60 6  4 6 Y (s) ‧ e ο  ο . 0.1  (s ) 0.1) Take L-1 , y (t) ‧ 6 S (t − 1)(1 ) e − (t −1)/10 ) ο 4e − t
/10 Control: T =0, y (0)=4. 4-4 4.5 a) dy1 = -2y1 – 3y2 + 2u1 dt dy 2 = 4y1 – 6y2 + 2u1 + 4u2 dt 2 (1) (2) Taking Laplace convert the above equations and rearrange, (2s+2)Y1(s) + 3Y2(s) = 2U1(s) (3) -4 Y1(s) + (s+6)Y2(s)=2U1(s) + 4U2(s) (4) Resolve Eqs. (3) and (4) simultaneously for Y1(s) and Y2(s), Y1(s) = (2s) 6)U1(s) − 12U 2(s)
2(s) 2(s) 3)U1 (s) (s) (s) − 12U 2(s) 2(s) 2(s) 2(s) 2(s) 2(s) 2(s) 3)U1(s) 2(s) 2(s) 2(s) 2 2(s) 2(s) 2(s) 2(s) 2(s) 2(s) 3)U1(s) − 12U 2(s) 2(s) 2(s) 3 )(s) 4) 2s 2 ο 14s ο 24 Y2(s) = (4s 12)U1 (s) − (8s 8)U 2 (s) 4(s) 3)U1(s) 8( s ο 1)U 2 (s) ‧ 2(s ) 3)(s 4) 2s 2s 2 οs 14s ο 24 Therefore, Y1 (s) 1 ο U1 (s) s 4 , Y1 (s) −6 ‧ U 2 (s ) n. 3)(s 4) Y2 (s)
2 ‧ U1 (s) s 4, Y2 (s) 4(s) 1) ‧ U 2 (s) (s) 3)(s) 4.6 a) Taking the L-1 gives, x (t) ‧ 0.09e− t /10 and x(t) ‧ x x x  (t) ‧ 0.3 ο 0.09e − t /10 The int values x (0) ‧ 0.09 and x(0) ‧ x (0) ο x ‧ 0.09 ‧ 0.3 ‧ 0.39. The plot of the concentration response appears in the Shape. S4.6. 4-5 x t Fig. S4.6. Transient response. The
transfer function is given by: X (s) 0.6 ‧ X i(s) 10s 1 For push input, xi(t) ‧ 1.5( t) and table 3.1, X i(s)=1.5 . Thus, 0.9 x  ‧ 10 s 1 b) Home Value Theorem: 0.9 ‧ 0.09 10 So, x(0) ‧ x(0) ‧ x ‧ 0.09 ο 0.3 ‧ 0.39 c) For the steady state, x(0) ‧ lim sX  ‧ s ο  x(0) ‧ x ‧ 0.3 d) As stated in the plot, the push response
is discontinuous in t=0. The results for parts (a) and (b) give the values of x(0) for t=0+ while the result for point (c) gives the value for t=0-. 4.7 The simplified stage concentration model becomes dx1 ‧ L( x 0 − x1 ) v ( y 2 − y1 ) dt y1 = a0 + a1x1 + a2x12 +a3x13 H 4-6 (1) (2) a) Allow the right side of Eq. 1 to be marked as f(L, x0, x1, V,
y1, y2) H dx1  �f  �f  ‧ f ( L, x0 , x1, V, y1 , y 2 ) ‧  L ο ο ο dt ‧ �   ‧ �x0   �f   x0 ο ο ο  x1 ‧ �x1 �    �f   �f   �       2   V    � y � y  �V   1   2 s Αντικαθιστώντας τα μερικά παράγωγα και σημειώνοντας ότι H dx1 dx1  : dt dt dx1  ( x0  x1
) L  L x0  L x1  ( y 2  y1 )V   V y 2  V y1 dt (3) Ομοίως,  �g   x1  (a1  2a 2a 2a 2 x1  3a3 x1 2 ) x1 y1  g ( x1 )    �x1  s b) (4) Για σταθερούς ρυθμούς ροής υγρών και ατμών, L  V   0 Λαμβάνοντας Laplace μετατρέπει eqs. 3 και 4, HsX 1 (ες)  L X 0 (ες)  L X 1 (ες) 
V Y2 (ες)  V Y1 (ες) (ες) (5) Y1(-ες)  (a1  2a2 x1  3a3 x1 ) X 1(-α) (6) 2 Από Eqs. 5 and 6, the desired transfer functions are: L  X 1 ( s ) H  X 0 ( s ) s  1 Y1( s )  X 0 ( s ) Y1( s )  Y2 ( s ) V  X 1 ( s ) H  Y2 ( s ) s  1 , (a1  2a 2 x1  3a3 x1 ) 2 s  1 (a1  2a 2 x1  3a3 x1 ) 2 s 
1 L  H V  H where:  H L  V (a1  2a 2 x1  3a3 x1 ) 2 4-7 4.8 The material balance is, d (Ah)  wi  Rh 1.5 dt or dh 1 R 1.5  wi  h dt A A Use a Taylor series expansion to linearize dh  1 R 1.5  1 1.5Rh 0.5  wi  h  ( wi  wi )  (h  h ) dt  A A A  A Since the bracketed term is identically zero at
steady state , dh  1 1.5 Rh 0.5  wi  h dt A A Rearranging Thus, A dh 1  h  wi 0.5 dt 1.5Rh 1.5Rh 0.5 H ( s ) K  Wi( s) s  1 where, K   height  1 h h    0.5 1.5 1.5w  flowrate  1.5Rh 1.5Rh mass  time A Ah V    0.5 1.5 1.5w mass / time 1.5Rh 1.5Rh 4-8 4.9 a)
The model for the system is given by dT  wC (Ti  T )  h p A p (Tw  T ) (2-51) dt dT mw C w w  hs As (Ts  Tw )  h p A p (Tw  T ) (2-52) dt Assume that m , mw, C, Cw, hp, hs, Ap, As, και w είναι σταθερές. Αναδιατύπωση των ανωτέρω εξισώσεων από την άποψη των μεταβλητών απόκλισης και σημειώνοντας ότι mC dTw
dTw dT dT   , dt dt dt dt dt dT  mC  wC (Ti  T )  h p A (Tw  T ) dt dt dT  m w w w  hs As (0  Tw )  h p A p (Tw  T ) dt Λήψη μετασχηματισμών και αναδιάταξης του Λακ. (mCs  wC  h p Ap ) T   wCTi(s)  h p Ap Tw (s) (ες) 1) (mw C w s  hs As  h p Ap )Tw( s)  h p Ap T (s)
(2) Υποκαθιστώντας στο Eq. 1 για Tw (ες) από Eq. 2 , (mCs  wC  h p Ap )T (s)  wCTi(s)  h p Ap h p P Ap (mw C w s  hs As  h p A p ) T ( s) Ως εκ τούτου, wC (m w C w s  hs Όπως  h p A p ) T (s)  Ti(s) (mCs  wC  h p A p )(m w C w s  hs Όπως  h p A p )  (h p P p ) 2 β) γ) wC (hs Όπως  p A p )  T
(-ες)  Το κέρδος είναι     Ti(s)  s 0 wC (hs As  h p A)  hs As h p Ap , το κέρδος αναμένεται να είναι ένα if the tank was insulated so that hpAp=0. For the heated tank, the gain is not one, because the heat input changes as the T. 4-9 4.10 Changes Additional Assumptions 1. Perfect mixing in tank 2. Fixed density and
special heat C. 3. What's stable? Energy balance for the tank, ‧VC dT ‧ wc (Ti − T) ο Q − (U ο bv 2 ) A(T − Ta ) dt Let the right side be declared with f(T,v), ο VC dT  �f    �f   ‧ f (T , v) ‧ ‧    T  v dt ‧ �T  s ‧ �v  s (1)  �f  2 ‧  − wC − (U ) bv ) A �T  s  �f  ‧  ‧2vva(T − Ta) ‧ �v  replaces



the few derivatives in the Eq. 1 and noting that the  ‧   wc (U bv 2) A T  − 2vva(T − Ta) v dt dT  μVC  ( U ο bv 2) A T  ‧ 2vva(T − Ta) v dt Receiving the Laplace transformation and reordering ‧VC ‧VCT  μ  wC (U  bv 2) A T   2vva(T  Ta )V   VCs   wC  (U  bv 2) A 
T   2vva(T  Ta)V     2vva(T  Ta) T  V  VCs   wC  (U  bv 2) A     2vva(T) T (s) wC  (U  bv 2) A  V ( s)   VC   wC ( U ο bv 2) A  s ο 1   4-10 dT dT  = dt dt 4.11 a) Mass balances for increasing tanks: dm1 ‧ w1 − w2 dt dm 2 ‧ w2 − w3 2 dt (1) (2) Ideal gas law:
m1 RT M m P2V2 ‧ 2 RT M P1V1 ‧ Flows (Ohm law : I ‧ (3) (4) E Driving Force ‧) R Resistance 1 ( Pc − P1 ) R1 1 w2 ‧ ( P1 − P2 ) R2 1 w3 ( P2 − Ph ) R3 w1 ( 5) (6) (7) Degrees of freedom: � number of parameters : 8 (V1, V2, M, R, T, R1, R2, R3) � number of variables : 9 (m1, m2, w1, w2, w3, P1 , P2, Pc, Ph) � number of
equations : 7  number of degrees of freedom to be eliminated = 9 − 7 = 2 Because pc and Ph are known functions of time (i.e. , inputs), NF = 0. b) Development Model MV1 RT MV2 Substitute (4) in (2) : RT Substitute (3) in (1) : dP1 ‧ w1 − w2 dt dP2 ‧ w2 − w3 dt 4-11 (8) (9) Substitute (5) and (6) in (8): MV1 d P1 1 1 ‧ ( Pc − P1 ) −
( P1 − P2 ) RT dt R1 R2 MV1 dP1 1 1 1 ‧ Pc (t) − ( ) P1 ) P2 RT dt R1 R1 R2 R2 (10) Substitute (6) and (7) in (9) : MV2 dP2 1 1 ‧ ( P1 − P2 ) − Ph ) RT dt R2 R3 MV2 dP2 1 1 1 ‧ P1 − ( ) P2 Ph (t) RT dt R2 R2 R3 R3 (11) dP1 ‧ f 1 ( P1 , P2 ) from Eq. 10 dt dP2 ‧ f 2 ( P1 , P2 ) from Eq. 11 dt This system has the following features :
(i) 2nd class denominator (2 differential equations) (ii) Zero-series numerator (see example 4.7 in text) W (s) (iii) The gain of 3 is not equal to the module. (It may not be because the pc units for the two variables are different). Note that 4.12 (a) First write the constant state equations: 0 ‧ wc (Ti − T) (Te − T ) 0 ‧ Q − ae (Te − T ) Now
removes the constant state equations from the dynamic equations dT ‧ (Ti − Ti ) − (T T)  that Ae  (Te − Te ) − (T − T )  dt dt meCe e ( Q − Q ) − that Ae (Te − Te ) − (T − T )  dt Note that dT / dt ‧ DT '/ dt and dTe / dt ‧ dTe '/ dt. Substitute mC (1) (2) deviation variables; then multiplied (1) by 1/wC and (2) by 1/(h
e Ae). 4-12 hA m dT ' ¦ − (T '− T 'i ) e e e (T 'e − T ') w dt wC meCe dT 'e Q' − (T 'e − T − T 'T − T 't )) he Ae dt he Ae (3) (4) Elimination of one of the output variables, T's or T'e (s), by solving (4) for this, and replacing it in (3). Because t'e(s) is the intermediate variable, remove it. Στη συνέχεια, η αναδιάταξη δίνει:  mmeCe 2  meCe
meCe m   s     s  1 T 'ες  wC w   αυτός Ae  whe Ae  mC  1   e e e s  1 T 'i (ες)  Q 's) wC  αυτός Ae  Επειδή και οι δύο εισροές επηρεάζουν τη δυναμική συμπεριφορά του Τ%, είναι απαραίτητο να αναπτυχθούν δύο λειτουργίες μεταφοράς για το μοντέλο. The effect of Q' on T' can occur assuming
that Ti is stable at the nominal constant state value, Ti . Thus, T'i = 0 and the previous equation can be rearranged as: T'(s) 1/ wc ‧ G1 (s) Q '(s) b2 s 2 μ b1s ο 1 (T 'i (s ) ‧ 0) Similarly, the effect of T'i on T' is achieved by assuming that Q= Q (i.e., Q'=0): meCe s ο1 that Ae T '(s) ‧ G2 (s ) T 'i (s ) b2 s 2 ο b1s ο 1 (Q's) ‧ 0) where b1 is
defined as meCe meCe m ο that Ae wC w b2 is defined as mCeme w w the principle of overlay, the effect of simultaneous changes in both inputs is given by T'(s) ‧ G1 (s)Q 'a ) G2(s) T'i(s) (b) The restrictive behavior of m eCe that goes to zero has b 2 ‧ 0 and b1 ‧ m / w and simplifies the last equation with T'(s) ‧ 1 / wC 1 Q ' ( s ) T 'i
(s) m m s μ1 s μ1 w w 4-13 4.13 Mass balance yields: dm ‧ qi − q dt (1) The term mass accumulation can be written, noting that dV=Adh=wtLdh, such as dm dV dh ‧ ‧ ο wt L (2) dt dt dt dt where wtL represents the changing surface is of the liquid. Substitution (2) in (1) and simplification gives: wt L dh ‧ qi − q dt (3) Geometric
construction indicates that wt/2 is the length of one side of a right triangle whose hypotenus is R. Thus, wt/2 is related to the level h with the yields of the mass balance A: wt ‧ R 2 − ( R − h) 2 2 After rearrangement, wt ‧ 2 ( D − h)h (4) with D = 2R (diameter of the tank). Substitution (4) in (3) produces a nonlinear dynamic model for the
tank with qi and q as inputs: dh 1 ‧ (qi − q) dt 2 L ( D − h)h To line this equation on the operating point (h ) , let qi − q f 2 L ( D − h) h Then  �f  1 ◊  ‧ �qi  s 2 L ( D − h)h  �f  −1 ‧  ‧ ‧ �q  s 2 L ( D − )h �  1  �f  ‧ ‧ q − q ‧ i ‧  ‧ �h  s ‧ �h ‧ ‧ 2 L ( D − h )h   ‧ 0   s 4-14 The last
partial derivative is zero, because qi − q from the constant state relationship, and the derived term in parentheses is finite for all 0 10s, Tm (t) ‧ 20(1 − exp( −t )) − 40(1 − exp( −(t − 1 − −(t − 10)) ‧ 120 Figure S5.27 Tm vs. time 5-37 (b) when t = 0.5 s, Tm (0.5) ‧ 20(1 − exp(--0.5)) ο 120 ‧ 127.87F when t = 15 s, Tm (2) ‧ 20 (1 − exp(--
2)) ο 120 ‧ 100.26F 5.28 a a5 a a4 1 ‧ 1 ο 22 ο 3 ο 3 2 s (2 s ) 1) s ο s 1 (1) (1) () we know that the terms a3 , a4 , a5 are exponential that go to zero for long time values, leaving a linear response. a 1 1  2 ‧ 1 ο 22 ‧ a1s ο a2 3 3 s s s ο 2s ο 1 ο 2s ο 1 ο Y ‧ ‧ 2  a2 ‧ lim s ο 1 ο 0 Set Q s ‧ ‧  1 ο 2s ο 1 ο 3 ‧1 1 (2 s 1)3 dQ
−6 ‧ds (2s 1) 4  −6  1 lim ‧ 1! s ο0  (2s 1)4  (from Eq. 3-62) Then a1 = a1 = − 6  the long-term response (after transiently having died) is y (t) ‧ t − 6 We see that the output lags the input by a period equal to 6. 5.29 a) Energy balance: rVc p where dT ‧ UA(TA − T) dt r is water density V is water volume 5-38 c p is the heat
capacity of water U is heat transfer factor A is tank surface t is time in minutes Replacement of numerical values and noting that dT dT ' TA ? ‧ dt dt ο dT ' 1000 ‧ 0.52 ‧ 1 ‧ 4180 ‧ ‧ 120 ‧ 60 ‧ ‧ 0.5 ‧ 1 ‧ T − T ' ‧ 4 dt Download Laplace transform: T ' ‧ s ‧ 1 ‧ TA ‧ s ‧ 72.57 s ‧ 1 TA ‧ 20 ‧ ‧ 15 − 20 ‧ S ‧ t ; T ‧
T ‧ 20 ‧ TA' −35S ‧ t - TA' ‧ ‧ ‧ 35 s 35 s ‧ 72.57 s ο 1 ‧ Application of the inverse Laplace To determine when the water temperature reaches 0 °C. T (t) ‧ −35(1 − e−t /72.57 ) ☐ 0 − 20 ‧ −35 ‧ (1 − e--t--72.57 )  t ‧ 61.45 minutes b) Since the second stage involves a phase change with a constant temperature, therefore,
the time spent on the phase change can be calculated on the basis of the following equation: rV - ‧ UA ‧ T − TA ‧ t T T' ‧ ‧ 1000kg / m3 ‧ ‧ 4 ‧ 0.52 ‧ 1m3 ‧ 334 ‧103 J / kg ‧ 1202 K ‧ ‧ 0.4 5 ‧1m2 ‧15 K ο t t t ‧ 386.6 min So the total time it takes to complete the water freeze in the tank is: ttotal ‧ 61.45 ο 386.6 � 448
minutes 5.30 (a) From the results after 15 hours , we can see: It is a first order system, the K gain is: 0 − ‧ ‧ 1 ‧ K ‧ ‧ 10−3 K / kW 0 − ‧ 1000 ‧ kW 5-39 It takes 5 to achieve a stable state, Thus, the time constant of 4 ‧ ‧ hours ‧ 0.8 hours ‧ 2880s 5 (b) The interval of step changes for entry should be longer, possibly longer
than 4 hours. T ' s K dT ; mc p ‧ UA ‧ T − Ta ‧ Because the profit is small and the time (c) Q ο s ο s ο s ο1 dt constant is great, we can see that the mass, density, thermal capacity and height of the oven are all large. 5-40 Chapter 6 6.1 (a) G οs ‧ 0.7 οs 2 ο 2 s 5 ο 5s 4 ο 9s3 ο 11s 2 ο 8s 6 Using matlab, poles and zeros are:
Zeros: (-1 +i) , (-1-i) Poles: -3 -3 1 (0+j), (0-j) (-1+j), (-1-j) zero axis poles 1.5 1 Imaginary part 0.5 0 -0.5 -1 -1.5 -3 -2.5 -2 -1.5 -1 -0.5 Actual Part 0 0.5 1 Figure S6.1. Poles and zeros G(s) shown at the complex level s. b) Process output will be delimited because there is no pole at the right half level, but oscillations will occur because of
pure roots imagine. c) Simulink Results: Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and Francis J. Doyle III 6-1 Step Answer 0.5 0.45 0.4 Width 0.35 0.3 0 ,25 0.2 0.15 0.1 0.05 0 0 20 40 60 80 100 120 140 Time-save S6.1c. Response of
output to unit step input. As shown in the Figure. S6.1c, the system is stable but oscillations occur due to pure fantastic roots. 6.2 (a) Standard form: G ο s ‧ 4 ο s ο 2 ο 0 ο 1 ο 2s ο 1 ο e −5 s ‧ b) Apply zero pole cancellation: 8 G ‧ s ‧ e−5 s ‧ 2s ο 1 ο Gain =8; Pole=-0.5? Zeros=None (c) 1/1 Padéapproximimation: e--5 s ‧ 1 − 5 /
2s 1 ο 5 / 2s The transfer function becomes  8  (1 − 5 / 2s) G(s) ‧ ‧  ‧ 2s ο 1  (1 5 / 2s) Profit = 8; poles = -0.5, -0.4; zero = 0.4 6-2 8  0.5s  1  0.5s  1 2s  1 e 5 s 6.3 Y ( s) K ( a s  1)  X ( s) (1 s  1) , X ( s)  M s From Eq. 6-13    y(t) = KM 1  1  a   1   t /1   e   KM 
 a)    1   a y (0  )  KM 1  a KM  1  1  b) Overshoot  y(t) &gt; KM   a   1  t /1  e  1  1      1 t / 1  KM 1  a e   KM 1   or when , a  1 &gt; 0 y   KM c) ( a   1 )  2 1 , that is, a &gt; 1 et /1  0 for KM  0 Inverse response 
y(t) &lt; 0     KM 1  a 1 et /1   0 1    a  1 a  e  t /1 or  1  e  t /1  0 1 1 Therefore, a &lt; 0. at t = 0. 6.4 K (- a s 1) Y (s) , ‧1&gt;‧2, ‧ X (s) (‧1 s 1)(2 s 1) X(s) = M/s From Eq. 6-15  ‧ ‧ ‧ 1 −t / ‧1 ‧ a − 2 −t / ‧2  y (t ) ‧ KM ‧ 1 ο a e − e  ‧ 1 ¦ 2  ‧ 1 − 2  6-3
a) Extremum ‧ y (t ) ‧ 0  1  ‧ ‧ ‧ 1  −t / ‧1 1  ‧ a − ‧ 2  −t / ο 2  e e K ‧0 ‧ ‧ ‧ ‧ ‧ ‧  ‧ ‧ ‧ ‧ 1 ‧ 1 ο 2  2 ‧   2    1 1  t    1  a / 2    e  1 2 �1 1   a / 1 b) since 1&gt;2 Overshoot  y(t ) &gt; KM    1 t / 1  a   2 t / 2  KM
1  a e  e   KM 1   2  1   2   1 1 t     a  1    e  2 1   0 , therefore a&gt;1 a  2 c) Inverse response  y (t )  0 at t = 0+  1    1  t / 1 1   a   2 e KM 0   a        2  1   2 1 1 2    1    1  1  ‧ a − 2  
‧  ‧ 0 ¦ ‧ ‧ 1 ‧ ‧ 1 ¦ 2  ‧ 2 ‧ ‧ ‧ ‧ 2  1 ‧ ‧ ‧ 1  ‧ 1  ‧0 ‧2 ‧1 − 2 From ‧1 &gt; 2, a &lt; 0. d) If there is an extremum in y, then from a): e  1 1 − t ‧ ‧ ‧ ‧ ‧ 1 ‧ 2 t ‧     1 − οa ‧2   ‧ ‧ 1 ¦ ‧ 1  ‧  1 ¦ ‧ ‧ 2  ‧ 1 ‧ 2   in ‧ ‧ ‧ 2 ‧ 1 − ‧ ‧ 1  6-4  −t / ο 2  +
e  ο 0 in t = 0   6.5 1 − 22.5s · 1  22.5s 1.4 1  9.64 s   e 30 s 40 s  1 1  22,5 s    Χρησιμοποιώντας 1/1 Padéapproxim : e--45 s � Gp  s  � 1,4  13,5s e 30 s 40 s  1 1  22,5 s    Gain = 1,4· 0 ο one ο ο 1 , so it is an over depreciated process, 1.4 True Value 1.2 1 0.8 0.6 0.4 0.2 0 0 50 100
150 200 Figure S6.5. Step system response. 6.6 Υ (ες)  K1 K  K U (ες)  2 U (ες)   1  2 U (ες) s   1  s   1 Υ (ες) K1   K1  K 2 s ( K1   K 2 ) s  K1   U (s) (s  1) s(s  1) 6-5 250 300 Βάλτε σε τυπική φόρμα Κ/ για ανάλυση:   K  K 1    2  s  1 K1  K1   1 K1  Y
(ες)   G(-α)    (Η)- Η)η)-α) (s  1) α) Το (τα) τάγμα(-α) είναι 2 (ο μέγιστος εκθέτης του s στον παρονομαστή είναι 2) β) Κέρδος του (των) G(-ων) είναι K1. The profit is negative if the K1 &lt; 0. c) The Poles of G(s) are: s1 = 0 and s2 = –1/1 is on a fantastic axis; S2 is on the left level. d) The zero of the G(s) is: sa ‧ If −1  K ‧
‧ ‧ 2 K1 ‧    ‧ − K1 K1 ‧ K 2 K1 ‧ 0 , zero is in the right half level. K1‧ K 2 Two possibilities: 1. K10 e) Profit is negative if K1 &lt; 0 Then zero is RHP if K1, + K2 &gt; 0. That's the only chance. (f) Fixed term and condition e-t/(g) If the input is M/s, the output shall contain a t-term that is not delimited. 6.7 (a) 2 s −3 −3 2 Q(s)
‧ P (s) ‧ 20s ο 1 20s ο  1 s(t) ‧ (4 − 2)S (t), P (s) ‧ 6-6 Q (s) (t) −6(1 − e − t / 20 ) b) R  or q (s) ‧ Pm(s) r (t) μ q (t) ‧ p m t ) ‧ p m (t) − p m (0) r (t) ‧ p m ) − 12 ο 6(1 − e − t / 20 ) K ‧ r (t ‧ ) 18 − 12 ο 6(1 − 0) ‧ 6 p (t ‧  (b) − p (t ) 0) 4--2 OS ‧ r (t ‧ 15) − r (t )  27 − 12 − 6(1 − e−15/ 20
) − 12 ‧ 0.514 r (t ‧ ) 12 Exceeding,  −  os ‧ exp ‧ ‧ 1 − 2 ‧   ‧ 0.514   ,  ‧ 0.2 The period T for r (t) is equal to the period for pm(t) because e-t/20 decreases monotonously. (c) Thus, T = 50 − 15 = 35 and T 1 −  2 ‧ 5.46 2 M(s) K ‧ 2 2 ο P  ‧ 2 ο 1 ο  ο 11 ο K  ο ο s ‧ 2 d) ( K ‧ ο 2 K
) s ( K ο K ) (s ο 2 οs ο 1)(s)  1) 2 2 2 Total process profit = Pm (s ) P (s) ‧ K ο K ‧ 6 − 3 ‧ 3 s ‧0 6-7 % psi 6.8 a) Transfer mode for the mixing tank: Gbt(s) ‧ K bt ‧ bt s 1 qin 2m 3 ‧ 2 minutes where K bt • 1 and 1m 3 / min - qi Transfer mode for the Gtl transfer line(s) ☐ K tl : K tl ‧ 1 ‧ tl ‧ 0.1m 3 ‧ 0.02 l 5 ο
1m 3/min So,  (s) C out K bt ‧ Cin (s) (2s ο 1)(0.02s ) 1) 5 which is a 6th series transfer mode. b) Given ‧bt &gt;&gt; ‧tl [ 2 &gt;&gt; 0.02], we can about 1 of e-☐s 5 (0.02s 1) 5 where ‧  (0.02) ‧ 0 ‧1  c) (s) K bt e −0.1s Cout � Cin (s) 2s 1 Because ‧bt � 100 ‧tl, we expect that this approximate TF will yield results very
close to those from the original TF (Part (a)). This approximate TF is exactly the same as the one that would have been obtained using a plug flow case for the transmission line. So we conclude that investing a lot of effort to acquire an accurate dynamic model for the transmission line is not worth it in this case. Note: if ‧bt � ,tl , this
conclusion will not be valid. 6-8 d) Simulation Simulink 1.2 1 Output/Kbt 0.8 0.6 0.4 0.2 0 Accurate model Approximate model -0.2 0 5 10 15 Time 20 25 30 Figure S6.8. Unit step responses for accurate and approximate models. 6.9 (a) G ‧ ‧ 320 ‧ 1 − 4s ‧ e−3s 80 ‧1 − 4s ‧ e −3s ‧ 24s 2 ο 28s ο 4 ο 6s ο 1 οs οs ο 1 ο Gain= 80;
time delay = 3; time constants ‧ 1 ‧ 6 , 2 ‧ 1; poles = -1, -1/6; zeros = 0.25 b) From ‧ ‧ −4 ‧ 0; will show a reverse answer. 6.10 (a) The transport function for each tank is C i(s) 1 ‧ Ci--1(s)  V  ο ο  s ο 1 ‧q , i = 1, 2, ..., 5 where the tank ith represents. 6-9 co is the input concentration in tank 1. V is the volume of each
tank. q is the volumetric flow rate. 5  C  or   1  C5 ‧ i  ,  ‧ C0(s) i ‧1  Ci−1(s)  ‧ 6s ο 1  5 Then, partial fraction extension, 2 3 4   ‧ t 1 1t 1t ☐ c5 ‧ 0.60 ‧ − 0.15 ‧1 − e t 6 1              6 2!  6  3!  6  4! ‧ 6  ‧ 6-10 b) Use of Simulink, 0.6 c5 c4
0.58 c3 c2 Concentration 0.56 c1 0.54 0.52 0.5 0.48 0.46 0.44 0 5 10 15 20 25 times 30 35 40 45 50 Figure S6.10. Concentration step reactions of the shaken tank. The value of the expression for c5(t) verifies the above simulation results:  52 53 54 ‧ −5  c5 (30) ‧ 0.60 − 0.15 −1 − e 1 ο 5 ο ο ο  ‧ 0.5161 2! 3! 4! •  6.11
First, consider the indisputable answer (with ☐=0); then apply the Actual Translation Theorem to find the desired delayed response. 6-11 Indicate the indisposed response (for (for (=0) by cm (t ☐). Cm(s) ‧ e −☐s Cm(s) (2) The transport functions for delayed and non-indisposed systems are as follows: Cm (s) −e)s  ο ο ο
1 (3) Cm(s) 1 ‧ C (-a) ο 1 (4) for the entrance of the ramp, c t) ‧ 2t; from Table 3.1: C (s) ‧ 2 s2 (5) The replacement (5) in (4) and the rearrangement gives:  1  2  C m     The corresponding response to the ramp entry is given by Eq. 5-19 with K =1, a =2, and ο=10: cm (t) ‧ 20 (e − t /10 − 1) ο 2t 6-12 (7)
Indicate when the alarm is valid for the unfinished system; So the alarm lights up when c m (ta) ‧ 25 minutes; i.e. when m (ta) ‧ 25 − 5 ‧ 20 minutes . . Substitution to (7) and resolution for ta by test and error gives ta ‧ 9.24 min. Let ta indicate the time the alarm goes off for the system with time delay. It is apparent from the definition
of time delay that, Ta ‧ ta - ‧ 9.24 ο 2.00 ‧ 11.24 minutes 6.12 a) Using the G method of Skogestad ‧s ‧ 5e − (2-1-0.2) s 5e--3.2 s ‧ (12s 1) 12s ο 1 Using Simulink, 5 4 3 2 1 0 -1 True Approximate 0 5 10 15 20 25 30 35 40 45 Figure S6.12 Unit step responses for accurate and approximate models. 6-13 50 (c) Maximum error
=0.265, in t= 9.89s, and the position corresponding to the maximum error is graphically displayed in the image above with a black vertical line. 6.13 From solution to exercise 2.5(a), the dynamic model for isothermal function is V1 M dP1 Pd − P1 P1 − P2 ¦ RT1 dt Ra Rb (1) V2 M dP2 P1 − P2 P2 P2 − Pf − RT2 dt Rb Rc (2) Receiving
Laplace transformation, and noting that Pf(s) ‧ 0, since Pf is stable, K b Pd(s) ο K a P2(s) ο 1 K P (s) P2(s) ‧ c 1 ο2 s ο 1 P1(s) ‧ where K a ‧ Ra /( Ra ) K b ‧ Rb /( Ra ο Rb ) K c ‧ Rc /( Rb ο Rc ) ‧ 1 ‧ V1 M Ra Rb RT1 ( Ra ο Rb ) ‧ V2 M Rb RT2 ( Rb ο Rc ) Replacing P1(s) from Eq. 3 to 4 , 6-14 (3) (4)  KBc
Kc  ‧ ‧  1 − K K K KC P2 (s) c ‧  Pd (s) (1 s) (1) (2 s 1) − K a K c  ‧ 1 ο 2  2  ο 1 ο 2 ο ο ο     1  Replaces P2 (s) from Eq. 5 to 4,  Kb  ‧  (2 s ) 1 ) 1 − K K P1(s) a c  ‧ ‧ Pd (s)  ο1 ‧2  2  ‧ ‧ ‧ 2 ‧  ‧ ‧ 1 − Ka Kc  ‧ 1 − Ka Kc   s ο1  (6) To determine whether the
system is oversampling or subsampling, consider the denominator of transport operations in Eqs. 5 and 6.  , Ka Kc  , Ka Kc  , 2 , 2 , 1 1 − Ka Kc   ‧ ‧2  1 (1 ο ο 2 ) (1 − K a K c) 1  ‧ 1 1  ο ο ο  2 (1 − K a K c) 2 ‧ ‧2 ‧1  (1 − K a K c) ‧1 ‧ 2 From x + 1/x ‧ 2 for all positive, positive x, 1 ‧ 2 1  ( 1 − K a K c)
From ‧ 0,  ‧1 Therefore, the system is oversealed. 6-15 6.14 Let G(s) ‧ 4e −-s ο 0.4s ο 1 ο 2 (2 s 2 ο 3s ) ‧ 4e- − s ο 0.0.0 4s ο 1 ο 2 (2 s 1) (s) We want an approximate model of the form, In order for the approximate model and the original models to have the same fixed-state gain, we set K ο 4. The longest time constant in G(s) for
neglect is 1. Thus, 1 ‧  Approximate of the shortest time constant by: ‧ ‧ 2 ο  ο1 ‧ 2.5 2 1 � e −0.4 s 0.4 s 1 Thus, 1 2 - � - ο ( ) 2 ο 2 (0.4) - ο 1.8 6.15 from Eqs. 6-71 and 6-72,  Since x  R2 A2  R1 A1  R2 A1 2 R1 R2 A1 A2  1  R1 A1  2  R2 A2 R2 A2 R1 A1  1   2  1 � 2 for all positive x and since
R1, R2, A1, A2 are positive x � 1 2  1 R2 A1 � 1 2 2 R1 A2 6-16 R2 A1 R1 A2 6.16 a) Mass balance on Tank 2: A2 dh2  q0  q2 dt Dividing by , � A2 dh2  q0  q2 dt For a linear resistance, (cf. Eq. 4-50), � q2  1 h2 R2 Substitute, � A2 dh2 1  q0  h2 dt R2 or A2 R2 � dh2  R2q0  h2 dt Introducing
deviation variables and Laplace transforming yields � H2�(s) R2  Q0�(s) A2R2 s 1 Because � we obtain , - Q2 ‧ 1 H 2 R2 Q2 1 R2 1 ‧ Q0(s) R2 A2R 2s ο1 A2R2s ‧ 2 ‧ A2 R2  6-17 Q2 1 ‧ Q0 ) ‧ 2 s ο 1 b) The mass balances in the two tanks produce (after dividing by , which is stable)  dh A1 1 ‧
−q1 A2 2 ‧ q0 q1 − q2 dt dt Valve resistance relationships:  (c) d) q1 ‧ 1 - (h1 − h2) R1 q2 ‧ 1 h2 R2 These equations clearly describe an interactive second-class system; one or more transport operations may contain only one zero (see section 6.4). For  Q2/Q0 transport function , we know that the fixed-state profit must be
equal to one of the (the balance of fixed-state materials around the two-tank system is q2 ο q0). The response for case (b) will be slower because this interaction system is second row, instead of the first row. 6.17 The entrance is Ti(t) ‧ 12 sin ‧t where ‧ ‧ 2 ‧ radians ‧ 0.262 hours −1 24 hours The Laplace transformation of the
input is from Table 3.1, Ti(s) ‧ 12‧ s ο ‧2 2 Multiplication of the transfer function by transforming input yields Ti(s) ‧ (--72 ο 36s) ‧ (10s ο 1)(5s ) 1) (s 2 ο2)Vert, or i) to make a partial fraction extension manually, or (ii) use the MATLAB residue function. The first method requires the solution of a system of 6-18 algebraic equations
to achieve the coefficients of the four partial fractions. The second method requires that the numerator and denominator be defined as descending power factors of s before calling the MATLAB residue function: MATLAB INTERESTS: &gt;&gt; b = [ 36*0.262 −72*0.262] b= 9.4320 −18.864 0 &gt;&gt; a = conv([10 1], conv([5 1], [1 0
0.262^2])) b= 50,0000 15,0000 4.4322 1.0297 &gt;&gt; &gt;&gt; [r,p,k] = residues(b,a) r= 6,0865 − 4,9668j 6,0865 + 4,9668j 38,1989 −50,3718 p= −0,00001 − 0.2620j −0.0000 + 0.2620j −0.2000 −0.1000 k= [] 0.0686 Note: the residue function recalculates all poles (listed in p). They are, in reverse order: p1 = 0.1( ‧1 ‧ 10), p = 0.2 ( ‧ 2
‧ 5) , both purely imaginary poles corresponding to the sine and cosine functions. The residues (listed in point r) are precisely the coefficients of the respective poles; in other words, the coefficients that would have been obtained by manually extending a part fraction. In this case, we are not interested in the actual poles, since both of
them produce exponential functions that go to 0 to t- . b= 0, so the exponential terms = 1. Using (L-13) and (L-15), ‧ ‧ 0.264 . y(t)  12.136 cos t  9.9336sin t  ... The width of the composite sinusoidal output signal, for large values, of t is given by A ( 12.136) 2 ο (9.9336) 2 ‧ 15.7 Thus, the output range is 15.7° for the
specified 12° width input. 6.18 150 148 146 y1 y2 144 142 y 140 138 136 134 132 130 0 1 2 3 4 t 5 6 Figure S6.3 18 Comparison between y1 and y2 6-20 7 8 6.19 (a) The mathematical model is derived on the basis of the balance of the material: dc V 1 ‧ F0 c0 ο R F2 c2 − F1c1 − Vkc1 dt dc V 2 ‧ F1c1 − ‧1 ο R ο F2c2 − Vkc2 dt
Removing the constant state equation and substituting the deviation variables: dc ' V 1 ‧ F0c0' ‧ RF2c2' − F1c1' − V dtc1' dt dc ' V 2 ‧ F1c1' − ‧1 ο R ο F2c2' − Vkc2' dt (b) The transfer mode can occur on the basis of the Laplace transformation: VsC1'  s   RF2C2'  s   F1C1'  s   VkC1'  s  VsC2'  s   F1C1'  s
  1  R  F2C2'  s   VkC2'  s  Solve above equations, we have: C2'  s   F0 F1 C0'  s  2 2 V s   2Vk   F1  F2  RF2   Vs  F1F2  Vk 1  R  F2  FVk  V k 1 2 2 (c) When R  0 , we have: C2'  s    F0 F1 C0'  s  2 2 V s   2Vk   F1  F2   Vs  F1F2  VkF2 
FVk  V k 1 2 2 F0 F1 C0'  s  Vs  Vk  F1 Vs  Vk  F2  which is equivalent to the transfer operation of the two tanks connected in series. (c) When k=0, Equation in (b) becomes: C2' ‧ s ‧ F0 F1 C0' ο s ο V s ο F1 ο F2 ο RF2 ‧Vs ο F1F2 2 F1 2 F1 ο RF2 ο F2, F0 ‧ F2 6-21 C2' ‧ ‧ F0 ‧ RF0 ‧ F0 ‧ V s ‧ RF0 ‧
RF0 ‧ 2 F0 ‧ Vs ο RF0 ‧ F0 ‧ F0 2 C0' s ο  1 F0 2 ‧1 ο  ‧ R C0' ο 2 F V 2 s 2 2 F0 ο Vs 2 F0Vs ο F02 ο 0 R R R R F0 When R ο  , C2' s ‧ C0' , equivalent to a single tank with 2Vs ο volume F0 = 2V. The profit of the above transport operation is 1. The dynamic model for the process is given by Eqs. 2-45 and 2-46, which
can be written as dh 1 ( wi − w) dt ‧A (1) w dT Q ‧ i (Ti − T) ο dt οAh οAhC where h is the liquid level A is the constant transverse area (2) System outputs: h , T System inputs : w, Q Suppose wi and Ti are constant. In Eq. 2, note that the nonlinear term  dT  μh  can be linearized as ‧  dt or h dT  dT ) h dt h dT  from dt dT
‧0 dt Then the linear deviation variable form (1) and (2) is dh  1 ‧ οA 6-22 dT  − wi 1 ‧ T ο Q dt οAh οAh C Taking Laplace transforms and rearranges, the (s). ) K1 ‧ W (s), where K 1 ‧ − , the  ‧0 , Q  (s) 1 1 1 ; and K 2 ‧A wi C For unit change to Q: h(t) ‧ h T (s) ‧0 , W (s), ‧2 ‧, ‧, K2 T (s) ‧ Q
(s) ‧ 2 s ο 1 ah wi T (t) ‧ T ο K 2 (1 − e − t / ‧2 ) For a unit step change in w: h(t) ‧ h ο K 1t , T (t) ‧ T 6.21 Additional assumptions: i) The density and special heat C of the liquid are constant. (ii) The temperature of the steam, Ts, is uniform throughout the heat transfer area. (iii) The TF feed temperature is constant (not necessary in
the solution). The mass balance for the tank is dV ‧ qF − q dt (1) The energy balance for the tank is ‧C d [V (T − Tref)] dt ‧q F (TF − Tref ) − q-C (T − Tref ) ( UA(Ts − T) (2) where Tref is a constant reference temperature and A is the heat transfer range of 6-23 dV from Eq. 1, 2014, in New Also, replace V with AT h dt (where AT is the
tank area) and replace A with pT h (where pT is the perimeter of the tank). Then Eq. 2 απλοποιούνται με την αντικατάσταση του AT dh  qF  q dt CAT h (3) dT  qF C (TF  T)  UpT h(Ts  T) dt (4) Στη συνέχεια, Eqs. 3 και 4 είναι το δυναμικό μοντέλο για το σύστημα. α) Κάνοντας μια επέκταση σειρά Taylor των μη γραμμικών
όρων στο (4) και την εισαγωγή μεταβλητών απόκλισης, Eqs. 3 και 4 γίνονται: AT CAT h dh  q F  q  dt (5) dT   C (TF  T)qF  (CqF  UpT h)T   UpT hTs  UpT (Ts  T)h Η (-ες)  1 1 QF (ες)  Q(-ουν) AT s  ΚΑΤαγάνως h   CqF  UpT h (7)    C (TF  T)    1 T 
   QF (ες)   CqF  UpT h      UpT (Ts  T)  UpT h   Ts(s)    H (s) )  CqF  UpT h   CqF  UpT h  (8) Η αντικατάσταση του H  από (7) σε (8) και η αναδιάταξη δίνει  CAT h CqF - UpT h - AT s - ? TF  T )  AT s  QF ( s )  s  1 T ( s )     CqF  UpT h 
  UpT hAT s   UpT (Ts  T )    Ts( s)    QF ( s)  Q( s)  CqF  UpT h   CqF  UpT h  6-24 (9) Let   CAT h CqF  UpT h Then from Eq. 7 H ( s) 1  QF ( s) AT s , H ( s) 1  Q( s ) AT s , And from Eq. 9  UpT (Ts  T )   C (TF  T ) AT    T ( s )  CqF
 UpT h   UpT (Ts  T )  QF ( s )  AT s  s  1  UpT (Ts  T )   CqF  UpT h  T ( s )   Q( s )  AT s  s  1   UpT h  Cq  Up h  T ( s)  F T     1 Ts(s) 6-2 5     1   H (s) 0 Ts (s) Σημείωση: 2  C (TF  T) AT UpT (Ts  T) είναι η σταθερά
χρόνου στον αριθμητή. Επειδή TF  T  0 (θέρμανση) και Ts  T  0 ,  2 είναι αρνητική, μπορούμε να δείξουμε αυτό το ακίνητο χρησιμοποιώντας Eq. 2 σε σταθερή κατάσταση: CqF (TF  T)   UpT h (Ts  T ) ή C (TF  T)  UpT h (Ts  T) qF Αντικατάσταση 2     hAT χρόνος διαμονής της δεξαμενής) qF T (-
α) Τ (-α) και το κέρδος σε κάθε λειτουργία μεταφοράς είναι Q (ες) QF (ες)  Up (T )  T s  K   at  CQF  UpT h   και πρέπει να έχει τις μονάδες θερμοκρασίας/όγκου . (Ο ολοκληρωτής διαθέτει μονάδες t-1). Για να απλοποιήσουμε το κέρδος λειτουργίας μεταφοράς, μπορούμε να αντικαταστήσουμε το UpT (Ts 
T)   CqF (TF  T) h από τη σχέση σταθερής κατάστασης. Στη συνέχεια, K CqFT (TF  T) hAT  CqF  UpT h  ή K  T  TF  Μέχρι h  V 1  T   CqF  6-26 και το κέρδος είναι θετικό από το T  TF  0 . Επιπλέον, έχει διαστάσεις θερμοκρασίας/όγκου. (Ο λόγος UpT h είναι The transport function h − qF is
an integrator with a positive profit. The fluid level accumulates any changes in qF, increasing for positive changes and vice versa. h − the transport function q is an integrator with a negative profit. h accumulates changes in q, in the opposite direction, reducing as q increases and vice versa. h − The Ts transfer mode is zero. The liquid level
is independent of ts and the steam pressure Ps. T − q transfer function is second class due to interaction with the liquid level; is the product of an integrator and a first-class process. T − the qF transfer function is second class due to interaction with the liquid level; has dynamic numerator since qF affects T directly, as well as if TF οT . T −
The Ts transfer function is first class because there is no interaction with the liquid level. (c) h − qF : h is constantly increasing at a steady rate. h − q : h is constantly decreasing at a steady rate. h − Ts : h remains stable. T − qF : for TF , T is initially reduced (reverse response) and then increased. After a long time, T grows like a ramp
operation. T − q : T decreases, eventually at a steady rate. T − Ts : T increases with a first-class response and achieves a new stable state. 6-27 6.22 a) The two-tank process is described by the following equations in deviation variables: dh1' 1  ' 1 ' '  w1  (h1  h2  dt A1  R  dh2' 1  dt A2 1 ' '   R (h1  h2
 (1) (2) Laplace transforming A1RsH1' ( s)  RWi ' ( s)  H1' ( s)  H 2' ( s) (3) A2 RsH 2' ( s)  H1' ( s)  H 2' ( s) (4) From (4) (A2 Rs  1) H 2' ( s)  H1' ( s) (5) H 2' ( s) 1 1   ' H1 ( s) A2 Rs  1 2 s  1 (6) or where 2  A2 R Returning to (3) (A1Rs  1) H1' ( s)  H 2' ( s)  RWi ' ( s) (7) Substituting (6) with
1  A1 R  1  ' ' (1s  1)   H1 ( s)  RWi ( s) 2 s  1   or 6-28 (8) (12 ) s 2  (12 ) s  H1' ( s )  R(2 s  1)Wi ' ( s ) H1' ( s ) R(2 s  1)  ' W1 ( s) s  12 s  (1  2 )  (9) (10) Dividing numerator and denominator by (1  2 ) to put into standard form H1' ( s ) [ R /(1  2 )]
(2 s  1)  W1' ( s)    s  1 2 s  1  1  2  (11) Note that K R R 1 1    1  2 A1R  A2 R ( A1  A2 ) A (12) since A  A1  A2 Also, let s  12 2 R 2 A1 A2 RA1 A2   1  2 R ( A1  A2 ) A (13) so that H1' ( s) K (2 s  1)  Wi ' ( s) s(3 s  1) (14) and H 2' ( s) H 2' ( s)
H1' (s) K (2 s The transport functions (6), (14) and (15) determine the operation of the process of the two tanks. The process of a tank is from the following equation in the deviation variables: 6-29 dh' 1' ‧ wi dt ‧A (16) Note that ‧ , which is constant , removes. Laplace transformation and rearrangement: H ' (s) 1 / οA ‧ Wi ' (s) s (17)
Again K‧ 1 οA H ' (s) K Wi ' (s) s (18), which is the expected integrated relationship without zero. b) For A1 ‧ A2 ‧ A / 2 ‧ 2 ‧ AR / 2 ‧ ‧ ‧ ‧ 3 ‧ AR / 4 ‧ (19) So ‧ 2 ‧ 2 ‧ 3 We have two sets of transport functions: One-Tank Process of Two Tanks H ' (s) K ‧ Wi Wi ' ( s ) (2)3 s ο1) ‧ Wi ' (s) s(3 s) H 2' (s) K ‧ ' Wi (s) s(3 s)
Remarks: - Profit ( K ‧ 1/ οA) is the same for all TFs. - Each TF contains an embed element. 6-30 - However, the two TF tanks contain a pole (3 s 1) that will filter changes in the level caused by the change wi(t). - On the other hand, for this special case, we see that zero in the first tank transfer mode (H i' ( s) / Wi' (s)) is greater than the
pole: 2 ‧3  ‧ 3 So we need to ensure that the reinforcement of changes in h1(t) caused by zero is no more than to cancel the beneficial filtering of the pole, so as to cause the first apartment to overflow easily. Now consider the general situations of the case of the two tanks: H1' (s) K (-A2 Rs) K ()2 s ο1) ‧ ' Wi (s)  ο RA1 A2  s(3 s)
s 1 ‧ A  ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 ‧ 1  ‧ A ο 1 ‧ A ο 1 ‧ A ο 1 2 (s) K ‧' Wi(s) s(3 s ) 1) (21) For A1 ο 0 or A2 ο 0 This loses the beneficial effect of the pole as the process tends to be more similar
to the first-class process. ‧3 ‧c) Optimal filtering can be found by maximizing ‧ 3 in relation to A1 (or A2) ‧3 ‧RA1 A2 ‧RA1 ( A − A1 ) ‧ A Find max ‧3 : Setting to 0: � ‧3 R ‧  a − A1 ) a1 (--1) ‧ �A1 A − A1 − A1 ‧ 0 2 A1 A A1 A / 2 Thus, the maximum filtering action is achieved when A1 ‧ A2 ‧ A / 2. 6-31 The ratio of ‧2
/ ‧3 determines the aid effect of zero to h1 (t ). As a result, the effect of changes in wi (t) for h1 (t) will be very large, resulting in the possibility of overflow in the first tank.  To sum up: The process designer would like to have A1 ‧ A2 ‧ A / 2 in order to achieve maximum filtering of h1 (t) and h2 (t ). However, the process response
should be checked for standard changes to the wi (t) to make sure that h1 does not overflow. If it does, the A1 area should be increased until it is not a problem. Note that ‧2 ‧3 when A1 ‧ A, so careful study (simulations) should be done before designing the separator tank. Otherwise, leave it quiet and use the non-separated tank. 6.23
The process transfer function is Y(s) K ‧ G(s) ‧ 2 U (s) (0.1s 1) (4s 2 ) 2s where K = K1K2. The square term describes a 2nd-class system that has not been sampled by ‧2 ‧ 4 ‧2 ο 6-32 2‧ ‧ 2 (a) ο  ‧ 0.5 For the element of the second order procedure with ‧2 = 2 and this degree of sampling ( ‧ 0.5) , the short time
constant, the element of the 2nd series process (-1 = 0.1) will have little effect. Actually, from 0.10. System II (air-closing valve): as the signal in the control valve increases, the flow through the valve decreases ☐ Rv &lt; 0. 8-4 b) System I: The flow rate is very high - need to close the valve ☐ reduce controller output ☐ reverse operation
controller Or: Process gain + Valve gain + Controller gain must be + (meaning reverse action) System II: Flow rate too high - need to close valve growth controller output ☐ direct acting controller. Or: c) Process Profit + Valve Profit – Controller Profit must be – (meaning direct operation) System I: Kc &gt; 0. System II: Kc &lt; 0. 8.5 (a)
From Eqs. 8-1 and 8-2,  p(t) ‧ p ο K c y sp (t) − y m (t) ο (1) The liquid transmitter ratio is ym(t) = KT h(t) (2) where: h is the liquid plane KT &gt; 0 is the gain of the direct action transmitter. The control-valve ratio is q(t) = Kvp(t) (3) where q is the manipulated flow rate Lv is the gain of the control valve. (a) Configuration (a) in the Figure.
E8.5: As h increases, we want to reduce qi, the rate of input flow. For an air-closing control valve, the output p controller must be increased. Thus as p increase reduces the ☐ direct-acting controller. 8-5 Configuration (b): As h increases, we want to increase the q, output flow rate. For an air-closing control valve, the output of the controller
should be reduced. Thus since the x p increase reduces a reverse action controller. b) Configuration (a) in the Figure. E8.5: As h increases, we want to reduce qi, the rate of input flow. For an air-opening control valve, the output p controller must be reduced. Thus since the x p increase reduces a reverse action controller. Configuration (b):
As h increases, we want to increase the q, the output flow rate. For an air-to-open control valve, the output of the controller should be increased. Thus as the p increase increases ☐ a direct-acting controller. 8.6 For the control PI t   1 p(t) ‧ p ο K c ο(t) ο  e(t*)dt * ‧I 0 ‧  t ‧  t   ‧    1 ο  p (t) ‧ K c ◊ e(t) ο 
e(t*)dt * ‧I 0 ‧  From e(t) = ysp – ym = 0 - 2 = - 2 Then , t    1 2 p (t) ‧ K c ‧ − 2 ο  (--2)dt * ‧ K c ‧ − 2 − ‧I 0 ‧I ‧   t   The initial response to t = 0 is − 2 Kc 2K c ‧ Akata and the numeric values of the initial response and inclination from the Fig. E8.6: The inclination of the response is − - 2 Kc = 6 − ☐
2K c = 1.2 min-1 Kc = -3 ☐ ‧I = 5 minutes 8-6 8.7 (a) The error signal can be described by: e(t) ‧ 0.5t E(s) ‧ 0.5 50 50 The PID controller transfer function is given by (Eq. 8-14):   P' (s) 1 ‧ K C ‧1 ο ο D s E(s)  ‧It is  The replacement provides the controller with the output:   1 ο Ds ‧1 ο  is    1 2 p '(t) ‧ 0.1
The replacement of numeric values and the addition of p ‧ 12 mA gives: 1 pPID (t   ) ‧ 12 t 2 t 2 t 0.5S (t) 3 (b) The equation for a PI controller is achieved by setting the tD to zero. 1 PPI (t) ‧ 12 t 2 t 3 (c) The design of the controller response for both controllers is shown in the Figure. S8.7. The two auditors have similar answers.
The difference is the sudden transition to t=0 that occurs with the PID controller as a result of the derivatives condition. When the specified point begins to change with a constant gradient, there is a step change in the error derivative from 0 to 0.5. The derived term on the controller gives it a start-up right when the adjustment point starts to
change that the PID controller does not have. 8-7 Figure S8.7: PID Controller Output Response 8.8 From Eq. 8-25 Inspection, the derivative kick = K c a) Analog kick = K c r b) e1 = e2 = e3 = .... = ek-2 = ek-1 = 0 ek = ek+1 = ek+2 = ...= r p k −1 ‧ p   ο t p k ‧ p ο K c ‧r ο r ο D r  οP    8-8 ‧D t   t 
p k οi ο p ο k c ‧r ο (1 ο i)   i   Kc p 2, ... ‧D r t K c r Kc p k-1 , k t r ‧I k+1 k+2 k+3 a) To eliminate the derivative kick, replace (ek – ek-1) in Eq. 8-25 by - (YK-Yk-1). (Note the minus sign.) 8.9 (a) Allow the fixed adjustment point to be indicated with y sp . The digital speed algorithm P is obtained with the setting of 1/-
I = D = 0 in Eq. 8-27: pk = Kc (ek – ek-1) = K c (y sp − y k ) − y sp − y k −1 ¦ = K c  y k −1 − y k ‧ The PD digital speed algorithm is obtained with a setting of 1/‧I = 0 in Eq. 827: pk = Kc [(ek – ek-1) + D (ek – 2ek-1 + ek-2)] t ‧ = Kc [ (-2 yk + yk-1) + D (-yk – 2yk-1 + yk-2) ] t 8-9 In both cases, pk does not depend on y sp .
b) For both of these algorithms pk = 0 if yk-2 = yk-1 = yk. This achieves a constant state with a y value that is independent of the value of y sp . The use of these control algorithms is not recommended if displacement is a concern. c) If the built-in function exists, then pk contains the term Kc a)  ‧D s  P  1  ‧ K ο ο1 ο E (s) ο
s οs ο 1 I D ‧  t (y − sp y k ). So, in stable condition, pk = 0 and yk-2 = yk-1 = yk , yk = y sp , and the displacement problem has been eliminated. 8.10  Kc  I s(D s  1)  D s  1  D sI s  I s(D s  1) 1  ( I   D) s  (1  )  D s 2   Kc    I s ( D s  1)  
πολλαπλασιάζοντας (Ι  D s 2   Ι s) P (ες)  K γ 1  (  D) s  (1  )  D s 2  E (s) Λαμβάνοντας αντίστροφα laplace μετασχηματίζει, δ 2 ε τ)  δ 2 p (t) dp (t) de(t)    (1  )  D   D  I  K c  e(t)  ( I   D ) dt dd 2  dt 2 dt ‧ b)  ο 1  ο D s  P (s) ‧  ‧ K c ◊ I
E (s) ‧ I s  ‧ d s ο 1  -multiplying ‧ I s 2 (■D s ) 1) P  (s) ‧ K c ο(i) 1)(d s 1) ο E (s) 8-10 ο ο ο d c) d 2 e(t)  d 2 p (t) dp (t) de(t)         K e (t)  (    )  I D I c I D dt dt 2  dt 2  Η προσομοίωση εκτελείται για τις ακόλουθες τιμές παραμέτρων: Kc  2 ,   3 ,  D  0,5 ,   0,1 , M = 1 Τα
αποτελέσματα Simulink-MATLAB εμφανίζονται στο σχήμα S8.10. : Step Answer 22 Parallel PID with Derivative Filter PID Series with Derivative Filter 20 18 16 14 p'(t) 12 10 8 6 4 2 0 2 4 6 8 10 Time Figure S8.10. Response step for parallel PID controllers and for series PID controllers with a derivative filter. 8.11 The integral part of the
auditor's action is determined by incorporating the error between the measurement and the specified point over time. As long as the error symbol remains the same (that is, if the measurement does not cross the specified point), the embedded element will continue to change monotonously. If the measurement passes the specified point,
the error term will change the symbol and the embedded element will start changing in the other direction. So it will no longer be monotonous. 8-11 8.12 a) False. The controller output can be certified or the controller may be in manual mode. (b) False. Even with the integer control action, the offset can occur if the controller output is
certified. Or the controller may be in manual mode. 8.13 First consider qualitatively how h2 responds to a change in the 2nd trimester. From natural estimates, it is clear that if q2 increases, h2 will increase. So if h2 increases, we want q2 to decrease, and vice versa. Since the control valve q2 is aerial, the output p level controller should be
reduced in order to reduce the q2. In short, if h2 increases we want p to decrease; therefore, a reverse action controller is required. 8.14 Consider first qualitatively how the soluble mass fraction x responds to a change in the rate of steam flow, S. From natural estimates, it is clear that if the S increases, the x will also increase. So if x
grows, we want S to drop, and vice versa. For a failopen (air-near) control valve, the output of p controllers must be increased in order to have the reduction S. In short, if x increases we want S to decrease, which requires an increase in the controller output p; therefore, an immediate action controller is required. 8.15 First qualitatively how
the output temperature Th2 responds to a change in the flow rate of cooling water, wc. From natural estimates, it is clear that if wc decreases, Th2 will increase. So if Th2 decreases, we want wc to decrease, and vice versa. But to determine the controller's action, we need to know if the control valve is open or fails nearby. Based on safety
reasons, the control valve should fail open (from air to close). Otherwise, the very hot liquid current could become even warmer and cause problems (e.g., bursting the tube or creating a two-phase flow). For an air-closing control valve, the temperature controller p output must be increased in order to have wc reduction. In short, if Th2
decreases we want wc to be reduced, which requires the output controller p to increase; therefore, a reverse action controller is required. 8-12 8.16 Two information is required to determine the action of the controller: i) Is the control valve fail open or fail near ii) Is x1 &gt; x2 or x1 &lt? x2 If x1 &gt; x2, then the mass balance is: x1w1 x2 w2
‧ xw ‧ x ( w1 ) x1  x2 x2  x1 ο x2 ο  ( x2 ο  ) w1 ο x2 w2 ‧ x(w1 ) x2 w1 ο w1 ο x2 w2 ‧ x ( w1 ) w2 ) x2 ( w1 ο w2 ) ο w1 ‧ x ( w1 ο w2 ) x x2 ο w1 ( w1 ) w2 ) Since all variables in the equation are positive, then x &gt; x2 . The only way to reduce x is to increase w2 (but x may never be less than x2). Therefore, w2
should be increased when x increases in order to have x decrease. If the control valve is open (air-close), then the composition controller output signal p should be reduced. A reverse action controller should therefore be selected. Conversely, for an airto-open control valve, a direct action controller should be used. If x1 &lt; x2, then x1w1
x2 w2 ‧ xw ‧ x ( w1 w2 ) x1 ο x2  x1 ‧ x2 −  ( x2 −  ) w1 x2 w2 ‧ x(w1 ) w2 w2 ) x2 w1 − w1 x2 w2 ‧ x( w1 ) w2 ) x2 ( w1 w2 ) − w1 ‧ x ( w1 ο w2 ) x x2 − w1 ( w1 ) w2 ) Since all variables are positive , then x &lt; x2 . If x increases, the controller should reduce it to restore it to the specified point. The only way to reduce x
is to reduce w2 (although x may never be less than x1). If the control valve is damaged open (air-close), then the output signal of the synthesis controller p should be increased in order to reduce w2. Therefore, the synthesis controller should act directly. Instead, for a fail close control valve, a reverse action controller should be used. 8-13
Chapter 9 © 9.1 (a) Flow speed transmitter:  15 psig - 3 psig  qm(psig)=  (q gpm - 0 gpm) 3 psig ‧ 400 gpm-0 gpm   psig  = 0.03  q(gpm) ο 3 psig gpm  πίεσης:  20 mA - 4 mA  Pm(mA)=   ( p in. Hg  10 μέσα. Hg)  4 mA - 30 in. Hg - 10 μέσα. Hg   mA  =  0.8    4 mA in. Bg  ‧ Flat transmitter:  5
VDC - 1 VDC  hm(VDC)= ο  (h(m) - 0.5 m) ο 1 VDC ‧ 10 m - 0.0. 5 m  VDC   = 0.421  h(m) ο 0.789 VDC m  ‧ Concentration transmitter:  10 VDC - 1 VDC   ‧ Cm(VDC)= ‧  (C (g/L)-3 g/L)+1 VDC ‧ 20 g/L - 3 g/L   VDC  = ‧ 0.529  C (g/L) − 0.59VDC g/L  ‧b) Gains, zeros and intervals are: Concentration
of flow pressure level 0.03 psig/gpm 0.8 mA/in. Hg 0.421 VDC/m 0.529 VDC/g/L Zero 0 gpm 10 in. Hg 0,5 m 3 g/L Span 400 gpm 20 in. Hg 9.5 m 17 g/L Gain 9.2 [Type here] 9-1 [Type here] a) Safer conditions are achieved by lower temperatures and pressures in the flash tank. VALVE 1.- Fail near (air-to-open) VALVE 2.- Fail open (air-
to-close) VALVE 3.- Fail open (air-to-close) VALVE 4.- Fail open (air-to-close) VALVE 4.- Fail open (air-to -close) VALVE 5.- Fail near (air-to-open) Adjustment valve 1 as fail close prevents more heat from switching to flash drum and setting valve 3 as fail open to allow steam chest to drain. Adjusting valve 3 as a failure opening prevents
pressure build-up in the container. Valve 4 should failopen to evacuate the system and help keep the pressure low. Valve 5 should be fail-close to prevent any additional pressure buildup. b) Steam flow in downstream equipment can cause a dangerous situation VALVE 1.- Fail near (air-to-open) VALVE 2.- Fail open (air-near) VALVE 3.-
Fail near (air-to-open) VAL VIA 24.- Fail open (air-to-close) VALVE 5.- Fail near (air-to-open) Setting valve 1 as fail near (air-to-open) prevents more heat from entering flash drum and minimizes future steam production. Setting valve 2 as fail open (air-to-close) will allow the steam chest to be evacuated, setting valve 3 as fail near (air-to-
open) prevents steam from escaping the vessel. Adjusting valve 4 as fail open (air-to-close) allows liquid to leave, preventing the build-up of steam. Adjusting valve 4 as fail near (air-to-open) prevents pressure buildup. c) Liquid flow in downstream equipment can cause a dangerous situation VALVE 1.- Fail near (air-to-open) VALVE 2.-
Fail open (air-near) VALVE 3.- Fail open (air-near) VALVE 4.- Fail near (air-to-open) VALVE 5.- Fail near (air-to-open) Adjust valve 1 as fail close to prevent all liquids from evaporating (This will cause the flash drum to overheat). Setting valve 2 as fail open will allow the steam chest to be evacuated. Adjusting valve 3 as fail open prevents
the accumulation of pressure in the drum. The valve 4 as closing the failure prevents the liquid from escaping. Valve adjustment 5 as closing failure prevents wet accumulation in drum 9-2 9.3 Note: This exercise is better understood after the material in Ch. 11 has been taken into account. a) Changing the extent of the temperature
transmitter will change its steady state gain, according to eq. 9-1. Because the performance of the closed loop system depends on the profits of each individual element (see Chapter 11), 11), may be adversely affected. (b) Changing the zero of a transmitted person shall not affect his profit. Thus, this change will not affect the stability of
the closed loop. c) Changing the control valve trim will change the (local) steady state gain of the control valve, dq/dp. Because the performance of the closed loop system depends on the profits of each individual element (see Chapter 11), the stability of the closed loop could be adversely affected (d) For this process, the change in the
feed flow rate could affect both the steady state gain and its dynamic characteristics (e.g. time constant and time delay). Because the performance of the closed loop system depends on the profits of each individual element (see Chapter 11), closed loop stability could be adversely affected. 9.4 Starting from Eq. 9-7: q Cv ‧ Pv Nf (l) gs
(1) The drop in pressure on the valve is: Pv ‧ P − Ps where Ps ‧ Kq 2 (2) (3) Resolve for K by connecting the nominal values of q and Ps . First, convert the nominal value of q to m3/h units to match the metric unit version of N (parameter N = 0.0865 m3/h(Kpa)1/2 when q has m3/h units and pressure has KPa units). 9-3 qd
‧ 0.6 m3 / min ‧ 36 m3 / h Psd ‧ 200 kPa Psd 200 kPa ‧ 2 ‧ 0.1 54 kPa/(m3 /h) 2 2 qd 36 (m3 /h)2 Now replace (3) in (2) to receive an expression for Pv in terms of q. K‧ Pv ‧ P − Kq 2 (4) Substitute (4) in (1) to get: q Cv ‧ (5) P − Kq 2 Nf (l ) gs The problem determines that qd should be 2/3 of qmax (where qmax is
the flow rate through the valve when the valve is fully open). 2 qd ‧ qmax 3 3 3 qmax ‧ qd ‧ 36 m3 /h 2 2 3 qmax ‧ 54m /h Now find the CV that will give qmax = 54 m3/h. Substitute q = qmax and f (l)=1 (valve fully open) in (5). qmax Cv  P  Kqmax 2 N gs Now that all of the variables on the right hand side of the equation are
known, plug in to solve for Cv. kPa m3 P  450 kPa, K  0.154 3 , N  0.0865 , (m / h) 2 h(kPa)1/2 g s  1.2, qmax  54 m3 /h 54 Cv  3 0.0865 m h(kPa)1/2 m3 h 450kPa  0.154 m3 h   m3 m3 1/2 0.0865 0.88(kPa) 0.076   h(kPa)1/2 h Cv  710.5 54 m3 h kPa 54 2 (m 3 /h) 2 3 2 (m /h) 1.2 54 9-4 9.5 Let Pv/Ps =
0.33 at the nominal q  320 gpm Ps = Pb+ Po = 40 + 1.953 � 10-4 q2 Pv= P - Ps = (1 –2.44 � 10-6 q2)PDE – (40 + 1.953 � 10-4 q2) (1 - 2.44 � 10 -6 � 320 2 )PDE - (40 + 1.953 � 10 -4 � 320 2) ‧ 0.33 (40 + 1.953 ‧ 10 -4 ‧ 320 2) PDE = 106.4 psi Let qd= q ‧ 320 gpm For the rated Cv, the valve is completely open at
110% qd i.e., at 352 gpm or the ceiling of 350 gpm  p  Cv ‧ q ‧ v  ‧ gs  − 1 2  (1 − 2.44 ‧10−6 ‧ 35 0 2 )106.4 − (40 ο 1.953 ‧ 10--4 ‧ 3502 )  Cv ‧ 350 ‧  0.9   − 1 2 Subsequently, using Eq. 9-27,  q  66.4 − � 10 - 4 q 2  ln  0.9 101.6 -  1 l l    −1/2    The diagram of the valve
characteristic is shown in Figure S9.5. From the plot of the valve featuring the graded CV 101.6, it is obvious that the characteristic is quite linear in the operating range of 250 ‧ q ‧ 350. The cost of pumping could be further reduced by reducing PDE to a price that will make Pv/Ps = 0.25 to q ‧ 320 gpm. Then PDE = 100 and for qd
= 320 gpm, the nominal Cv = 133.5. However, as the plot shows, the valve featuring this design is only slightly more nonlinean in the operating area. Therefore, the selected valve factor is Cv = 133.5. 9-5 400 350 300 250 q (gpm) 200 150 ------- Cv = 101.6 100 - - - Cv = 133.5 5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 l (valve lift) Figure
S9.5. Control valve characteristics. 9.6 (a) (b) There are three control valves. The choice of air-to-near versus air-to-open is based on safety reasons: i. Steam control valve: Air-open to prevent overheating of the evaporator. ii. Level control valve (adjusting the flow rate of liquid B): From air to aperture to prevent exposure of steam coils to
the vapour space, which could cause the coils to burn out. iii. Pressure control valve (adjusting the flow rate of solvent D): From air to closure to avoid over-pressure of the evaporator. For the three controllers: i. Concentration controller: As the concentration of the xB product increases, we want the steam pressure, Ps to increase. Since
the steam valve is air-to-air, this means that the controller output signal to the control valve (via I/P) should be increased. Therefore, the controller should act immediately. 9-6 p. Level controller: As the liquid h level increases, we want the B product flow rate to increase. Since the control valve is air-to-air, this means that the controller
output signal to the control valve (via I/P) should be increased. Therefore, the controller should act immediately. iii. Pressure controller: As the pressure P increases, we want to increase the flow rate of solvent D. Since the control valve is air-to-close, this means that the controller output signal to the control valve (via I/P) should be
reduced. Thus, the controller should act in reverse action. 9.7 Since the dynamic behaviour of the system will be described using deviation variables, the dynamic attribute can be analysed taking into account that the input conditions (not related to x) can be considered constant and therefore the deviations are zero. The original form is the
linear homogeneous ODEON: M d 2x dx ο R ο K x ‧ 0 2 gc dt dt Taking the transformation Laplace gives,  X (s) ‧ s 2 ο Rs ο K  ‧ 0 ‧ gc   M 2 R  X (s) ‧ s ο s ο 1 ‧ 0 K ‧ Kgc   Calculate and g comparing this equation with the standard format of the second order model in (5-39) (bearing in mind that gc = 32,174 lbm
ft/(lbf s2)). M  0,00965s Kg c   ‧ 2  ‧ R 2 M R ‧ Kg c K gc ‧ 155.3 KM The characteristics of the valve are extremely more than multiplied and can be accurately accessed with a first-class model obtained by neglecting the term d2x/dt2. 9-7 9.8 Configuration I: This series configuration will not be very effective because a
large flow rate must pass through a small control valve. Thus, the pressure drop will be very large and the flow control will be ineffective. Configuration II: This parallel configuration will be effective because the large control valve can be adjusted to provide the nominal flow rate, while the small control valve can be used to adjust the flow
rate. If the small valve reaches its maximum or minimum value, the large valve can be adjusted slightly so that the small valve is about half open, allowing it to adjust the flow again. 9.9 First note the time-domain step response for a 10°C step change. Then solve the equation to find out when y(t) is equal to 5 (since the variables are in
deviation variables, this represents when TM will reach 30 °C). ym (t) ‧ KM (1 − e − t /) where M ‧ 10o C, K ‧ 1, and ο 10s ym (t) ‧ 10(1 − e − t /10 ) 5 ‧ 10(1 − e − ta /10 ) ta ‧ 6.93s Therefore, the alarm will sound 6.93 seconds after 1:10 pm. 9.10 � � � � � 0.1 psig ‧ 0.5% of full-scale accuracy of 20 psig is unknown, since the
true pressure in the tank is unknown resolution 0.1 psig = ‧ 0.5% accuracy 20 psig full scale = repeatability = ±0.1 psig =±0.5% of the full scale 20 psig 9-8 9.11 Suppose the sensor/transmitter gain is module (i.e. there is no constant state measurement error). Then tm(s) 1 ‧ T  (s) (s 1) (0.1s 1) where T is the temperature measured
and Tm is the measured value. To change the temperature of the ramp: 0.3 T  (t) = 0.3t (°C/s) , T  (s) = 2 s 1 0.3 Tm (s) ‧ 2 (s ο 1)(0.1s 1) s Tm ο ο 2 (s ο 1)(0.1s 1) s Tm &lt;1&gt; &lt;5&gt; (t) ‧0.00333e−10t 0.333e--t μ 0.3t − 0.33 The maximum error occurs as t- : Maximum error = |0.3t − (0.3t − 0.33)| = 0.33 °C If the
shortest time constant is neglected, the time domain response is slightly different for small t-values, although the maximum error (t-) does not change. T °C 6 5 4 3 2 1 0 0 5 10 15 Time 20 Figure S9.11. Response for process temperature sensor/transmitter. Orange solid line is T'(t), and purple dotted line is T'm(t). 9-9 Chapter 10 © 10.1
Assumptions: 1. Uncompressed flow. 2. The chlorine concentration shall not affect the density of the air sample. 3. T and P are about stable. The detection time, td, depends on the delay of the transfer time, the value and response time of the analyser, tr = 10 s: td = , – tr (1) delay) can be calculated as the ratio of the volume of tubing V
divided by the volumetric flow rate of chlorine q: i‧ V q q (2) where q = 10 cm3/s and, p Di 2 L V, 4, where Di diameter is: (3) Di = 6.35 mm – 2(0.762 mm) = 4.83 mm = 4.83 x 10-3 m Substitute Di and L = 60 m in (3): V = 1.10 x 10-3 m3 Substitute Di into (2): V  1.10 x10 3 m3   100cm  ‧  ‧  ‧ 110 s q ‧ 10 cm3 /s  ‧ 1 m
 3 i ‧ The substitute in (1): td = - + tr = 110 + 10 = 120 s = 2 minutes carbon monoxide (CO) is one of the most widely displayed toxic gases, especially limited for confined spaces. High concentrations of carbon monoxide can korean a person's blood in a few minutes and quickly lead to respiratory problems or [Press here] 10-1 [Press
here] even death. Therefore, long detection time would not be acceptable if the hazardous gas is CO. 10.2 (a) Start with a mass balance in the tank. Then solve the equation to find out how long it takes for the height to drop from 1 m to 0.25 m. dV (t) ‧ −C h(t) dt Adh(t) ‧ −C h(t) dt dh C ¦ − h0.5 dt A C h −0.5 dh − dt A 0.25 h tf −0.5 dh
‧  − 1 0 C dt A 2( 0.25[m] − 1[m]) − − −1m0.5 ‧ C (t f − 0) A C tf A A 1[m0.5 ] C ο (0 .5) 2 [m 2 ] tf ‧ [m0.5 ] 2.5 0.065[m/min] t f ‧ 12.1[min] tf the alarm will sound at 5:12:06 am (b) To find out how much liquid has leaked from the tank , calculate the volume difference between the start level and the alarm level. 2 1  V ‧ Vh ‧
1m − Vh ‧0.25 m ‧ ‧ ο [m]  ‧1[m] − 0.25[m]‧ ‧ 0.59m3 ‧2  0.59m3 of liquid has leaked when the alarm sounds. 10.3 10-2 Key safety concerns include: 1. Early detection of leaks in the environment 2. Over-investment of the flash drum 3. Maintain enough fluid level so that the pump is not a cavity. 4. Avoid driving liquid to the
gas. These concerns can be addressed by the following means. 1. Leak detection: sensors for hazardous gases shall be located near the flash drum. 2. Over compression: Use a high pressure switch (PSH) to turn off the feed when a high pressure occurs. 3. Liquid stock: Use a low-level switch (LSL) to shut down the pump in case of low
level. 4. Liquid stimulation: Use a high level alarm to turn off food if the liquid level becomes too high. This SIS system appears in the Schema. S10.3 with conventional control loops for pressure and liquid level. Steam PSH PT LSH S PC P Feed LT LC LSL S Liquid Figure S10.3: SIS System 10.4 10-3 The proposed alarm/SIS system is
shown in Figure S10.4: S PSH C O L U M N Figure S10.4: Proposed alarm system/SIS The tubular valve is normally closed. But if the pressure in the column exceeds a specified limit, the High Pressure Switch (PSH) activates an alarm (PAH) and causes the valve to fully open, so the pressure in the tank. 10.5 Set k as the number of
sensors that work correctly. We want to calculate the probability that k ‧ 2 , P (k ‧ 2) . Because k = 2 and and = 3 are mutually exclusive events (see Appendix F), P(k ‧ 2) ‧ P(k ‧ 2) ο P(k ‧ 3) These probabilities can be calculated from the dionymal distribution 1  3 1 P(k ) ‧  ο 0.05 (0.95)9 2 ‧ 0.135 ‧ 2  3 0 P(k) ‧ ‧
 ‧ 0.05 ‧ (0.95)3 ‧ 0.857 ‧ 3 10-4 (1)  n if the notation, It refers  the number of combinations of n objects taken r ‧r  3 at a time, when the order of r objects is not significant. So ‧ ‧  ‧ 3 and ‧ 2  3 ‧  ‧ 1. From EU 1, ‧ 3 P (k ‧ 2) ‧ 0.135 ‧ 0.857 ‧ 0.992 1 See any typical probability or statistics
book, e.g., Montgomery D.C. and G.C. Runger, Applied Statistics and Engineering Probability, 6h edition, Wiley, New York, 2013. 10.6 Solenoid switch: S = 0.01 Level switch: LS = 0.45 Level alarm: A = 0.3 Notation: PS = the probability that the solenoid switch fails PLS = the probability that the level switch fails PA = the probability
that the level alarm fails PI = the probability that the interlock system (solenoid &amp; level switch fails) We wish to determine, P = the probability that both safety systems fail (i.e., the original system and the additional level alarm) Because the interlock and level alarm systems are independent, it follows that (cf. Appendix F): P = PI PA (1)
From the failure rates, the following table can be constructed, in analogy with Example 10.4: Component  R P=1–R Solenoid: � �  Level switch: 0.45 0.638 0.362 Level alarm 0.3 0.741 0.259 10-5 Assume that the switch and solenoid are independent. Στη συνέχεια, PI = PS + PSW - PSW PI = 0,01 + 0,362
– (0,01)(0,362) PI = 0,368 Υποκατάστατο σε (1): P = PI PA = (0,368)(0,259) = 0,095 Μέσος χρόνος μεταξύ των αποτυχιών, MTBF: Από (10-6) έως (10-8): R = 1 – P = 1 – 0,095 = 0,905  = - ln (0.0.095 = 905) = 0,0998 MTBF  1   10,0 έτη 10,7 Let P2 = η πιθανότητα να μην λειτουργεί σωστά ούτε το ροόμετρο D/P. Στη συνέχεια, το
P2 και η σχετική αξιοπιστία, R2, μπορούν να υπολογιστούν ως (βλ. προσάρτημα ΣΤ): P2 = (0,82)2 = 0,672 R2 =1 - P2 = 1 - 0,672 = 0,33 Για τον υπολογισμό της συνολικής αξιοπιστίας του συστήματος, αντικαταστήστε το R2 = 0,33 για την τιμή αξιοπιστίας για ένα μόνο μετρητή ροής D/P, 0,18, στον υπολογισμό R του παραδείγματος 10.4:
5 R  - Ri  (0,33)(0,95)(0,61)(0,55)(0,64) i 1 R  0,067 Έτσι , the addition of the second D/P flowmeter has increased the overall reliability of the system from 0.037 (for example 10.4) to 0.067. 10-6 10.8 Let P3 = the probability that none of the 3 D/P flowmeters are working properly. Then P3 and the relative reliability, R3, can be
calculated as (see Appendix F): P3 = (0.82)3 = 0.551 R3 =1 – P3 = 1 – 0.551 = 0.449 To calculate the overall reliability of the system, replace R3 = 0.449 for the reliability value for two D/P flows (R2=0.33) in the calculation of R from the calculation of R by the of R from the calculation of R from the calculation of R from the calculation of R
from the calculation of R from the calculation of R from the calculation of R from the calculation from the calculation of R from the calculation of R from the calculation from the calculation of R from the calculation from the calculation from the calculation from R from the calculation of R from the calculation of R from the calculation from the
calculation from the calculation from R from the calculation from the calculation from calculation R2=0.33) to the calculation of R from the calculation of R from the calculation from the calculation of R from the calculation from the calculation from the calculation from the calculation from the calculation from the calculation from the R from
the calculation from the calculation of R from the calculation from the calculation from the calculation from the calculation from the calculation from R from the calculation from the calculation of R from the calculation from the calculation from R from the calculation from the calculation from the calculation of R from the 10.7: 5 R  - Ri 
(0.449)(0.95)(0.61)(0.55)(0.64) i 1 R  0.092 Έτσι, η προσθήκη του τρίτου ροόμετρου D/P αύξησε τη συνολική αξιοπιστία του συστήματος από 0,067 (για άσκηση 10,7) σε 0,092. 10.9 Ας υποθέσουμε ότι ο διακόπτης και το σωληνοειδές είναι ανεξάρτητα. Από τα δεδομένα ποσοστού αποτυχίας, μπορεί να κατασκευαστεί ο ακόλουθος
πίνακας, σε αναλογία με το παράδειγμα 10.4:  διακόπτης πίεσης στοιχείων R P=1–R 0,34 0,712 0,288 Solenoid διακόπτης/βαλβίδα:   . Ας υποθέσουμε ότι ο διακόπτης και το σωληνοειδές είναι ανεξάρτητα. Στη συνέχεια, η συνολική αξιοπιστία του συστήματος κλειδώματος είναι, R = (0,712)(0,657) = 0,468  =
- ln (0,468) = 0,760 MTBF  1  10-7  1,32 έτη Κεφάλαιο 11 11,1 D1 Gd1 D2 Gd2 X 2 Ysp Km ~ Ysp +- E Gc P U Gv B Gp X3 + + X1 + + Gm 11,2  1   Gc (s)  K c 1   I s  Η λειτουργία μεταφοράς κλειστού βρόχου για αλλαγές σημείου ρύθμισης δίνεται από τον Eq. 11-36  11  1 1   , με Kc αντικαθίσταται από
K c 1   I s   1  1 K c K IP K v K p K m 1    I s  (s  1) H  (ες)   H sp (ες)  1  1 1  K c K IP K v K p K m 1     I s  (s  1) όπου Kp = R = 1,0 min/ ft2 , και  = RA = 3,0 λεπτά. Note also that �� = � = 3.0 min. Solution Manual for Process Dynamics and Control, 4th edition Copyright ©



2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and Francis J. Doyle III 11-1 Y psi   ft 3 / min   min  mA   KOL  K c K IP K v K p K m  (5.33)  0.75 0.2  1.0 2  4    3.2 mA   psi   ft  ft   3� + 1 1 3.2 ( 3� ) (3� + 1) � ′ (�) 3.2 1.0 = = = ′ ��� (�) 1 + 3.2 (3� + 1) ( 1 ) 3� + 3.2
0.94� + 1 3� 3� + 1  ( s)  For H sp (3  2) 1  s s h(t )  1  e 1.07  t  0.94ln 1  h(t ) h(t )  2.5 ft h(t )  0.5 ft t  0.65 min h(t )  3.0 ft h(t )   1,0 ft t, h(t  0,65 min)  2,5 ft h(t  )  3,0 ft 11,3 Gc (s)  K c  5 ma/ma Ας υποθέσουμε m = 0, v = 0 και K1 = 1, στο σχήμα 11.7. a) Offset =
Tsp ()  T ()  5 F  4.14 F  0.86 F b)  K  K m K c K IP K v  2  T ( s )  s  1   Tsp ( s )  K  1  K m K c K IP K v  2   s  1  Using the standard current range of 4-20 ma, 11-2 Km  20 ma  4 ma  0.32 ma/  F  50 F K v  1.2 , K IP  0.75 psi/ma ,  =5 min , Tsp ( s)  T ( s) 
7.20K 2 s(5s  1  1.440K 2 ) T ()  lim sT ( s)  s 0 T ()  4.14 F c) 5 s 7.20K 2 (1  1.440K 2 ) K 2  3.34 F / psi From Fig. 11.7 , από ti  0 Pt() K v K 2  T () και Pt()  1,03 psi PtK v K 2  Ti K1  T , Pt  3,74 psi Pt ()  Pt  Pt()  psi 11.4 (a) Controlled variable: c3 Manipulated
variable: q2 Disturbance variable: c2 (note: q1 and c1 kept constant.) If c2 changes, then q2 must be adjusted to keep c3 at the specified point. 11-3 C'2(s) lb sol ft3 ^ C'3sp(s) C'3sp(s) lb sol ft3 Km ma E(s) +- Gc ma psi C'3m(s) ma Q'2(s) Gv GIP ma X1 P'T(s) ) P's Gd X2 Gp USGPM C'3(-s) Gm lb sol ft3 (b) Gm (s) ‧ K m e − - s
assuming ‧m = 0 m Gm(s) ‧ (20 − 4)ma −2 s  ma  − 2 s e e ‧ ‧ ‧ 2.67 lb sol lb sol/ft 3  ‧ (9 − 3) 3 ft  1   Gc (s) ‧ K c ‧ ‧ 1 ο s I  ‧ G IP(s) ‧ K IP ‧ 0.3 psi/ma Gv(s) ‧ K v ‧ (10 − 20) USGPM USGPM − ‧ 1.67 (12 − 6) psi For the process and function of disturbance transfer : Total material balance for the
tank, USgallons  dh  ‧ q1 q 2 − q3 ‧ 7,481 A ft 3 ‧  dt As h is kept constant at 4 ft from the overflow pipe: 0 ‧ 10 ‧ 15 − q3 (1) So q3 ‧ 25 Component balance for soluble, 11-4 + + C'3(-a) 7.481 Ah d (c3) ‧ q1c1 q2 c2 − q3 c3 dt (2) Line each term on the right side of Eq. 2 as described in section 4.3: q1c1 q1 c1 q1c'1 q'1 c1
q 2 c 2 ‧ q 2 c 2 q 2 c' 2 q' 2 c 2 (3) q 3 c3 ‧ q 3 c3 q 3 c 3 q q ' 3 c3 In a stable state : 0 ‧ q1c1 ο q 2 c 2 − q3 c3 (4) Put (2) in deviation variable taking into account (3) and (4): 7.481 Ah dc'3 ‧ q 2 c ' 2 ο q ' 2 c 2 − q 3 c ' 3 − q ' 3 c3 dt As q'3 = q'2: 7,481 Ah dc'3 ‧ q 2 c ' 2 q ' 2 c 2 − q 3 c ' 3 − q ' 2 c3 dt 7.481 Ah dc'3 ‧ q 2 c ' 2 ' q ' 2
(c 2 − c 3 ) 3 ) − 3 c ' 3 dt (5) Taking Laplace convert and rearrange gives K 1 K2 Q2 (s) C 2 (s) (s) (6) οs οs ο 1 οs 1 c − c3 q lb sol/ft 3 7.481Ah where K1 ‧ 2 , K 2 ‧ 2 ‧ 0.6 and ‧ ‧ 0.08 ‧ 15 minutes q3 q3 q3 q3 USGPM C3 (s) from a ‧ ‧ D 2 / 4 ‧ 12.6 ft 2 , and h ‧ 4 ft . Therefore, G p(s) ‧ 0.08 0.6 and Gd(s) ‧ 15s ο
1 15s 1 (c) Closed loop responses for disturbance changes and adjustment point changes can be obtained using algebra block diagram for the block diagram in part (a). 11-5 Therefore, these responses will only change if any of the transfer functions in the blocks of the diagram change. i. c 2 changes. Then block transfer mode G p (s)
changes due to K1. Therefore Gc(s) need to be changed, and retuning is required. ii. Changes in km. Narrow loop transfer functions change, therefore Gc(s) must be adjusted to compensate for changes in Gm and Km. Pi controller needs to be reset. iii. Km remains unchanged when zero is set. The controller does not need to be reset. To
verify the results of linearity, the nonlinear model is used: d (c 3) 7.481 Ah ‧ q1c1 q2 q2 − q3 c3 dt q1 ο q 2 ‧ q3 Response step c3 to q2: (Profit 0.077 compared to linear gain (Kp) 0.08 in 6 Eq. response c3 to c2: (Profit 0.6 compared to linear gain (Kd) 0.6 in Eq. 6) 11-6 Results are consistent with linearity. 11.5 (a) From Eq. 11-26 we
get the closed loop transfer function for changes that point Km Gc Gv Gp Y = Ysp 1 + Gc Gv Gp Gm Substitution of information from the problem gives 4 Y 4 4 s(s + 4) = = 2 4 Ysp 1 + s (s+ 4) + 4 s + 4 s(s + 4) 1 Or in standard format (Eq. 5-40), with t = 2 and g= 1 Y 1 = Ysp 1 s 2 + s + 1 4 (b) Given a unit step change at the specified
point we have 11-7 Y(s) = s (s 2 4 + 4s + y 4) Using the Final Value Theorem we get 4 4 lim sY(s) = 2 = =1 s + 4s + 4 4 s⟶0 Therefore y(∞) = 1 (c) As the step change is a unit step change , and we have shown that y(∞) = 1, we can say that offset = 0. This is consistent with the fact that the profit of the total transport operation is 1, so
there will be no compensation. Normally analog control does not eliminate compensation, but does for this integration process. d) Using Eq. 5-50 or taking the inverse Laplace Transformation of the answer given above we get y ‧t ‧1 − ‧1 ο 2t ο e--2t The replacement of the value of 0.5 for t gives y ‧ t ‧ 0.264 (e) We can say from the
answer above that the answer above that the answer will not be oscillation, the answer will not be oscillation,  ‧ 1 . 11.6 For the analog controller, gc(s) ‧ K c Assume that the level transmitter and control valve have negligible dynamics. Then Gm(s) ‧ K m Gv (s) ‧ K v 11-8 The block diagram for this control system is the same as in
Fig.11.8. Hence eqs. 11-26 and 11-29 can be used for closed loop responses to adjustment and load point changes, respectively. Transport modes G p (s) and G d (s) are as given in Eqs. 11-66 and 11-67, respectively. a) Substituting for Gc, Gm, Gv, and Gp into Eq. 11-26 gives  1  Km Kc Kv    Y 1 As     Ysp s  1 
1  1 Kc Kv  K m  As  A where    Kc Kv Km (1) For a step change in the setpoint, Ysp ( s)  M / s M /s Y (t  )  lim sY ( s)  lim s  M s 0 s 0  s  1 Offset = Ysp (t  )  Y (t  )  M  M  0 b) Substituting for Gc, Gm, Gv, Gp , and Gd into (11-29) gives  1   1      K c K
v K m  Y ( s) As      D( s) s  1  1  1 Kc Kv   K m  As  where It is given by Eq. 1. For a step change in the disorder, D(s) ‧ M / s  − M /( K c K v K m )  −M Y (t ο ) ‧ lim sY (s) ‧ lim s ‧ ‧  s ο0 s 1)   Kc Km km  −M Offset = Ysp (t ο ) − Y (t ο ) ‧ 0 − ‧ ‧ Kc Km   μ 0  Therefore, is
not removed for a step change in the disorder. 11-9 Using diagram block algebra Y ‧ G d D g pU  (1) ‧ ~ U ‧ Gc Ysp − Y − G pU ‧ From (2), ‧ (2) GcYsp − GcY ~ 1− Gc G p Replacement for U in Eq. 1 1 G (G c p ‧ ~ ~ − − G p) Y ‧ Gd (1 − Gc G p) D G p Gc Ysp Therefore, G p Gc Y ‧ ~ Ysp 1 g gc (G p − G p) and Gd (1 −
Gc G p) Y ‧ D 1 g (G p − G p) 11.8 The available information can be translated as follows 1. The outputs of both tanks have a q0 flow rate at all times. 2. Up to (s) ‧ 0 3. Since an energy balance indicates a first-row transfer function between T1 and Q0 , T (t) ‧ 1 − e −t / ‧1 T () or 2 ‧ 1 − e − 12 / ‧1 , ‧1 = 10.9 minutes 3 11-
10 Therefore T1 (s) 3 F / (--0 ,7 5 gpm) 4 ‧ ‧ ‧ Q0(s) 10.9s ο 1 10.9s ο 1 T3 (s) (5 − 3) ‧ F /(--0.75gpm) 2.67 ‧ ‧ Q0 (s) ‧ 2s ‧ 1 ο 2s 1 4. for t2(s) = 0 T1(s) (78 − 70) ‧ F /(12 − 10)V 4 ‧ V1(s) 10s 1 10s 1 T3(s) (90 − 85) ‧ F /(12 − 10)V 2.5 ‧ V2 (s) 10s 1 1 10s 1 5. 5‧2 =50 min or ‧2 = 10 minutes Since the input and output
flow rates for tank 2 are q0 and tank volumes are equal, T3 (s) q0 / q0 1 ‧ T2 (s) ‧ 2 s ο 1 10.0s 1 6. V3(s) ‧ 0.15 T3(s)  30  7. T2 (t) ‧ T1 ‧ t −  t1 (t − 0.5) ‧ 60  T2 (s) ‧ (e) 0.5 s T1 (s) (s) Using these transfer functions, the block diagrams are as follows. 11-11 (a) (b) (c) The configuration of the control in Part (a) shall
provide the best control. As shown in the above block diagrams, the feedback loop contains, in addition to gc, only a first-class process in part a), but a second series of co-conspirator-time-delay process in part b). Therefore, the controlled variable responds more quickly to changes in the manipulated variable for part (a). 11-12 11.9 The
given block diagram is equivalent to Gd Ysp E' +- +~ ~ Y1-Y2 P Gc ~ ~ G *(1-e-☐s) For the inner loop, let Gc P ‧ Gc ‧ ~ ~ E 1 gc G * (1 − e − -s ) In the outer loop, we have Gd G Y ‧ D 1 g gc g Substitute for G c, Y ‧ D Gd G GC G 1 ο ~ ~ * 1 g g (1 − e − − -s ) d G 1 g gc g * (1 − e − ☐s ) Y ‧ ~ ~* D 1 g g g (1 − e − e ) gc g 1
1.10 a) Draw CLT F: Y Y3 Y2 G3 Z G2 P 11-13 + + G D Y Y ‧ G3 (D ο Y1) G2 K c E Y G3 D G3 G1 K C E G2 K E Y G3 D (G3G1 K c G2 K c) E E ‧ − K mY Y ‧ G3 D − K c (G3G1 g2) K mY G3 Y ‧ D 1 k c (G3G1 g2 ) K m b) Characteristic equation: 1 k c (g3g1 g2 ) k m 0 4   5 1 kc ο ο 0  s − 1 2s ο 1  5(2 s 1) ο 4(s − 1) 
1 ) Kc    (s − 1) (s − 1)  (s − 1)(2s 1) k c 5(2s ) 1) 4(s − 1) 2s 2s 2s − s − 1 k c (10s 5 4s − 4) ‧ 0 2s 2s 2s 2 (14K c − 1) s ( K c − 1) ‧ 0 Necessary K c  1/14 and K c  1 For a 2nd series characteristic equation, these conditions are also sufficient. Therefore, K c is  1 for closed loop stability. 11.11 11-14 (a) CF's) Kg/m3 ~
C'sp(s) Km Kg/m3 ma +- GL X1 E ma P' GPI + + Pv' KIP ma Q'A Gv m3/min psig X2 Gp + + GD C'm(s) C'TL Gm ma Kg/m3 C' GTL Kg/m3 b) Transmission line: Transmission line volume = / 4 (0.5 m)2(20m)= 3.9 3 m3 Nominal flow rate on line = q A ο q F ‧ 7.5 m 3 / min Time delay on line = 3.93 m 3 ‧ 0.52 minutes 7.5 m 3 /min GTL
(s) ‧ e −0 ,52 s Composition transmitter: Gm(s) ‧ K m ‧ (20 − 4) ma ma ma ‧ 0.08 3 (200 − 0) kg/m kg/m 3 Controller from the ideal controller in Eq. 8-14  ‧  1  ~  E (s) ο K c ο D s C sp (s) − C m (s) P (s) ‧ K c ο1 ‧ ‧ I s  ~ In the above equation , set C sp (s) 0 to receive only the derivative at the process
output. Then,  1   G PI (s) ‧ K c ‧ ‧ 1 ο I s  11-15 C's) GD(s) ‧ K c ‧ D s with Kc &gt;0, as the controller should be reverse action, since P(t) should be increased when Cm(t) decreases. I/P converter K IP ‧ (15 − 3) psig psig ‧ 0.75 (20 − 4) ma ma Control valve Gv (s) ‧ Vv ‧v s ο 1 5 v ‧ 1 , Rv ‧ dq A dpv ‧ v ‧ 0.2
minutes ‧ 0.03(1 / 12) (ln 20)(20) pv ‧ pv q A ‧ 0.5 ‧ 0.0.0.0. 17  0.03(20) 0.03(20) pv  3 12 pv  3 12  0.5  0.17  0.33 K v  (1/12)(ln 20)(0,33)  0,082 Gv (ες)  pv  3 12 m 3 /min psig 0,082 0.2s  1 Διαδικασία Ας Ας cA είναι σταθερή για καθαρό A. Ισοζύγιο υλικών για το A: V dc  q A γ A  q F c F  ( q A  q F ) c
dt Γραμμοποίηση και γραφή σε μεταβλητή απόκλισης 11-16 (1) V dc   c A q A  q F c F  q A  q F )c   c q A dt Λήψη Vs  (q A  q F) C (-α)  (γ A  γ)Q A (ες)  q F C F (ες) (2) Από Eq. 1 σε σταθερή κατάσταση , dc / dt ‧ 0 , c ‧ (q A c A ) q F c F ) /(q A ο q F) ‧ 100 kg/m 3 Substitution of numeric values
in Eq. 2, 5s ο 7.5-C (s) ‧ 700 Q A(s) ο7 C F (s) 0.67 s ο 1-C (s) ‧ 93.3 Q  (s) (s) 0.93 C F (s) 93.3 0.67s ( 1 0.93 Gd (s) ‧ 0.67s ο 1 G p(s) ‧ 11.12 Stability limits are derived from the Eq attribute. 11-83. Therefore, if a change of organs affects this equation, then the stability limits will change and vice versa. a) The
transmitter gain, Km, changes as the extent changes. Thus Gm(s) changes and the characteristic equation is affected. Stability limits are expected to change. b) Zero in the transmitter does not affect km gain. Therefore gm(s) remains unchanged and stability limits do not change. c) Changing the control valve trim changes the G. This
affects the characteristic equation and the stability limits are expected to change as a result. 11-17 11.13 (a) 1 Kc ‧ 0 ' 5s 2 ο 6 s ο 1 ο K c ‧ 0 ο 5s ο 1 ο ο 1 ο Application the square type produces the roots: s − 6  36 − 20 ‧ 1 ο K c ‧ 10 To have a stable system, both roots of the characteristic equation must have negative real parts.
As a result, 20 ο1 ο Kc ο  0 ☐ Kc  −1  1  K c ‧1 ο  ο Is  ) 1 ο 0 ‧ A ο 5 3 ο 5s 3 ο 3 ο 1 ο 5s 3 6 s 2 ο s ο K c s ο K c ‧ 0 ο 5s ο 1 ο 1 ο 1 ‧ 3 2 When ‧ 0.1 , 0.5s ο 0.6s ο 0.1 ο1 ο 1 ο Kc ο Kc ‧ 0 Using direct substitution, and set ‧ j ‧ : ‧0.5 ‧ Re: Im: 3 ο 0.1 ο1 ο K c ‧ ‧ j − 0.6 ‧ 2 ο K c 0 −0.6o2 + Kc = 0 −0.5o3 +
0.1(1 + Kc )h = 0(2) ‧ ο 0 : K cm ‧ 0.136 (1) To have a stable system , we have: 0 ο K c ο 0.136 � 3 2 When ‧ ‧ 1, 5s ο 6s ο1 ο 1 ο Kc ‧ Kc ‧ 0 Set s ‧ j ‧ ‧ ‧ ‧ ‧ 1 ο Kc οs ο Kc ‧ 0 Set s ‧ ‧ ‧ 1 ‧ 1 ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧
‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ 5‧ ο1 ο K ‧ ‧ j − 6 ‧ 3 c 2 ο Kc ‧ 0 −6o2 + Kc = 0 −5o + (1 + Kc ) h = 0 ‧ ο
0 : K cm ‧ −6 To have a stable system, we have: Kc  0 Re: Im: 3 11-18 (1) (2) � 3 2 When ‧ ‧ 10, 50s ο 60s ο 10 ο1 ο Kc ο s ο Kc ‧ 0 s Set ‧ j ‧ j ‧ : ‧50 ‧ 3 ο 10 ο1 ο K c ο ‧ ‧ j − 60 ‧ 2 ο K c ‧ 0 −6002 + Kc = 0 −50ot3 + 10(1 + Kc) h = 0 (2) ‧ ο 0 : K cm ‧ −1.09 To have a stable system, we have: Kc  0 Re: Im: (1)
(c) Adding larger amounts of integrated weighting (reduction ‧ I) will destabilize the system 11.14 From the block diagram, the characteristic equation is taken as   2   ο (1) ο 3    2   1  ‧   1 ο Kc ¦  ‧  ‧ 0 ‧1 ο (1)  2    s − 1   ο 10  ‧  ‧ ο 3   that is,  2  2  1  ‧ ‧ 1 ο  ο
5  ‧ s ο  10  Simplification, s 3 ο 14s 2 ο 35s ο (4 K c − 50) ‧ 0 Set s ‧ j : ‧ ‧ Re: Im: 3 ο 35 ‧ j − 14 ‧ 2 ο 4 K c − 50 ‧ 0 −14o2 + 4Kc − 50 = 0 (j) − oh3 + 35h = 0 (2) ‧ ο ο 0: Kcm ‧ 135 ‧ 0 : Kcm ‧ 12.5 12.5 ο K c ο 135 11-19 (1) 11.1 5 Replacing the transfer functions in the characteristic equation in (11-81)
gives : Kp K c K v e −- s K mGcGVG p ο ps ο1 K c K v K p e −- s Y ‧ ‧ Kp Ysp 1 ο GcGvG pgm ο p s ο 1 ο K c K v K p e - s - s 1  Kc Kve  ps 1 Y e s e viker s; Thus, ‧ G ‧ OL 1 ο s Ysp s ο 1 ο e − s Simulate the above relationship through MATLAB, we have: Let Kc ‧ K ‧ K p ‧ p ‧ - 1, we have step response of a
closed loop mode 0.7 0.6 Answer 0.5 0.4 0.3 2 0.2 0.1 0 0.5 1 1.5 2 2.5 Time 3 3.5 4 4.5 5 Figure S11.15 Closed Loop Operation Step Response As shown in η χρονική καθυστέρηση δεν θα οδηγήσει σε αντίστροφη απόκριση. 11-20 11.16  1   Gc (ες)  K c 1   s I   Kv  1,3  (10 / 60) s  1 0.167s  1 Gv (ες)  1 1
 Όπως 22.4s G p (ες)   2 από Α  3 ft  22,4 gal ft Gm (ες)  K m  4 Χαρακτηριστική εξίσωση είναι  1    1,3   1    1  Κ γ 1   (4)  0     0,167s  1  2 2.4s  (3.73 I) s 3  (22.4 I) s 2  (5.2 Κ γ  Ι) s  (5.2 Κ γ)  0 Χρήση άμεσης υποκατάστασης , and set s  j :  3.73
 3 I  5.2 K c I   j  22.4 I  2  5.2 K c  0 −22.4�� �2 + 5.2�� = 0 (	) − 3.73�� �3 + 5.2�� �� � = 0  � 0 :  cm  0.167 To have a stable system, we have: K c  0, I  0.167 Re: Im: (1) (2) 11.17   s  1  5  GOL ( s )  K c  I 2   I s  (10s  1)  N (s)    D( s ) D( s)  N ( s)  
I s(100s 2  20s  1)  5K c ( I s  1)  0  100 I s 3  20 I s 2  (1  5K c ) I s  5K c  0 Set s  j , έχουμε: 11-21  100  3  1  5K c    j  20  2  5K c  0 −200I ω2 + 5Kc = 7 Re: (1) (ι) − 100λ ω3 + (1 + 5Kc )τΙ ω = 0 (2) Im:  � 0 :  Im  25 K c 1  5K c   0 : K cm  0 Για να
έχετε ένα σταθερό σύστημα, έχουμε: K c  0,  25 K c 1  5K c Η περιοχή σταθερότητας εμφανίζεται στο παρακάτω σχήμα: 7 6 Περιοχή σταθερότητας 5 -I 4 3 2 1 0 0 1 2 3 4 K c) 5 1 6 7 γ Βρείτε  Ι ως K c    25K c   25  lim   lim    5 K c  1  5 K K c  1/ K  5 c  c       5 εγγυάται τη
σταθερότητα για οποιαδήποτε αξία του Kc. Appelpolscher είναι λάθος για άλλη μια φορά. 11-22 11.18 Gc ( s )  K c GV ( s)  Kv  KV V s  1 dws dp p 12 5 v  20 s G p (s)  0.6 lbm/s  0.106 ma 2 12  4  v  4 s 2.5e  s 10s  1 Gm ( s )  K m  (20  4) ma ma  0.4   (160  120) F F Characteristic equation
is s  0.106  2.5e  0.4  0 1  ( K c )   4s  1  10s  1  a) (1) Substituting s=j in (1) and using Euler's identity e-j=cos – j sin  gives -402 +14j + 1 + 0.106 Kc (cos – jsin)=0 Thus and -402 + 1 + 0.106 Kc cos = 0 (2) 14 - 0.106Kc sin =0 (3) From (2) and (3) , μαύρισμα   14
402  1 (4) Επίλυση (4),  = 0,579 από δοκιμή και σφάλμα. Η υποκατάσταση  στο (3) δίνει Kc = 139,7 = Kcm Η συχνότητα ταλάντωσης είναι 0,579 rad/sec b) Η αντικατάσταση της προσέγγισης Pade στο (1) δίνει: 11-23 e s � 1  0,5s 1 1  0.5s 20s 3  47s 2  (14.5  0.053K c) s  (1  0.106K γ)  0 Αντικατάσταση in above
equation, we have: 47 2  1  0.106 K c   20 3  14.5  0.053K c  j  0 Thus, we have:  47 2  1  0.106 K c  0    0.587   3 20  14.5  0.053K c  0  K c  143.46 Therefore, the maximum gain, Kc = 143.46, is a satisfactory approximation of the true value of 139.7 in (a)
above 11.19 a) 4(1  5s ) (25s  1)(4 s  1)(2 s  1) Gc ( s )  K c G (s)  D( s)  N ( s)  (25s  1)(4s  1)(2s  1)  4 K c (1  5s )  0 200s 3  158s 2  (31  20K c ) s  1  4 K c  0 Substituting s=j in above equation , we have: 158 2  1  4 K c   200 3  31  20 K c  j  0 Thus, we have: 
158 2  1  4 K c  0    0.191   3 200  31  20 K c  0  K cm  1.19 b) (25s  1)(4s  1)(2s  1)  4 K c  0 200s 3  158s 2  31s  (1  4 K c )  0 Substituting s=j in above equation, we have: 158 2  1  4 K c   200 3  31  j  0 c) Thus, we have: 158 2  1  4
K c  0    0.394   3  200   31   0  K cm  5.873  Because Kc can be much higher without the RHP μηδέν είναι παρούσα, η διαδικασία μπορεί να γίνει για να ανταποκριθεί γρηγορότερα. 11-24 11.20 The characteristic equation is 0.5 K c e 3 s 1 0 10s  1 a) Using the Pade approximation 1  (3 / 2) s e
3 s � 1  (3 / 2) s in (1) gives 15s 2  (11.5  0.75K c ) s  (1  0.5K c )  0 Substituting s=j in above equation, we have: (1) 15 2  1  0.5Kc  11.5  0.75Kc  j  0 Thus, we have: 15 2  1  0.5 K c  0    0.760   11.5   0.75 K   0  K cm  15.33 c  b) Substituting s = j in (1) and
using Euler's identity. ε 3 j  cos(3)  j sin(3) δίνει 10 j  1  0,5K c cos(3)  j sin(3)  0 Στη συνέχεια, 1  0,5 K c cos(3)  0 (2) 10  0.5K c sin(3)  0 και (3) Από (2) και (3) μαύρισμα(3) = -10 (4) Eq. 4 έχει άπειρο αριθμό λύσεων. Η λύση για το εύρος /2 &lt; 3 &lt; 3/2 βρίσκεται από τη δοκιμή και
το σφάλμα να είναι  = 0,5805. Στη συνέχεια, από Eq. 2, Kc = 11,78 Οι άλλες λύσεις για το εύρος 3 &gt; 3/2 εμφανίζονται σε τιμές  για τις οποίες cos(3) είναι μικρότερη από cos(3 � 5.805). Έτσι, για όλες τις άλλες λύσεις του , Eq. 2 δίνει τιμές Kc που είναι μεγαλύτερες από 11,78. Ως εκ τούτου, η σταθερότητα εξασφαλίζεται
όταν 0 &lt; Kc &lt; 11,78 Για την επίλυση Eqs. 2 και 3, ένας άλλος τρόπος είναι να χρησιμοποιήσετε τη μέθοδο του Νεύτωνα. Με την αρχική εικασία Kc = 5,  = 0 ( σταθερή κατάσταση), η λύση για Eqs. 2 και 3 είναι: Kc = -2,  = 0 Με διαφορετική αρχική εικασία (π.χ., Kc = 5,  = 5), το διάλυμα είναι: Kc = 11,78,  = 0,5805 Και πάλι, c
= 0,5805 και η σταθερότητα εξασφαλίζεται όταν 00 KC &lt; 11.78 11-25 (c). Kc =15.33, unstable 150 100 50 response 0 -50 -100 -150 -200 -250 0 50 100 15 0 200 250 times 300 350 400 450 500 400 450 500 400 450 500 Kc =14, steady but slow convergence with oscillations 150 100 50 response 0 -50 -100 -150 -200 -250 0 50 100 150
200 250 time 300 350 Kc =6, constant and fast convergence 150 100 50 response 0 -50 -100 -150 -200 -250 0 50 100 150 200 250 time 3 00 0 350 Figure S11.20 Simulation results of different settings Kc 11-26 11.21 (a) To approximate GOL(s) with a FOPTD model, the Skogestad approach technique is used in Chapter 6. Initially, 3K c e
− (1.5)0.3)0.2) s 3K c e −2 s GOL (s) ‧ (60s 1)(5s 1)(1) (5 3s 1)(2s 1) (60s 1)(5s 1)(3s 1)(2s ο 1) Skogestad approach method for taking a FOPTD model: Time constant � 60 + (5/2) Time delay � 2 +(5/2) + 3 + 2 =9.5 Then 3K c e −9.5 s GOL(s) � 62.5s 1 (b) The characteristic equation is 3K c e −9.5 s 1 ο0 62.5s ο 1 Replacement s = j
in (1) and using euler's identity. (1) e--9,5 j ‧ cos(9.5) − j sin(9.5) then gives, and 3KC cos ο 9,5 ‧ ο 1 ο 62,5 ‧ − 3KC sin(9.5) ‧ j ‧ 0 1 • 3K c cos(9.5) ) ‧ 0 (2) 62.5 ‧ − 3K c sin(9.5) ) ‧ 0 (3) From (2) and (3) tan ‧ 9.5 ‧ ‧ − 62.5 ‧ (4) Eq. 4 has an infinite number of solutions. The solution for the range ‧/2 &lt; 9.5; &lt; 3/2 (to
make sure Kc is positive) is from the test and the error is ‧ = 0.1749. Then, from Eq. 2, Kc = 3.678 Therefore, stability is ensured when 0&lt; Kc &lt; 3,678 c) Conditional stability occurs when K c ‧ K cu ‧ 3.678;   0.1749 11-27 Kc =-1, unstable 0 -2 response -4 -6 -8 -10 -12 -14 0 100 200 300 400 500 time 600 700 800 900 1000
700 800 900 1000 700 800 900 1000 Kc =3.678, stable but with oscillations 1 0.9 0.8 0.7 response 0.6 0.5 0.4 0.3 0.2 0.1 0 0 100 200 300 400 500 time 600 Kc =15, unstable 250 200 150 100 response 50 0 -50 -100 -150 -200 -250 0 100 200 300 400 500 time 600 Figure S11.21 Simulation results of different Kc settings 11-28 11.22
Characteristic equation is: 1  Gc G p Gv G m  1  K c s 3  3s 2  3s  1  5K c  aK c s 5  as  ( s  1) 3 ( s  1) 3 s 3  3s 2  (3  aK c ) s  1  5K c s  ( s  1) 3 A prerequisite for stability is that all numerator factors are positive. When a &lt; 3/Kc (Kc &gt; 0), the s factor becomes negative so that the control system
becomes unstable. 11.23 (a) Displacement = hss – hfinal = 22.00 – 21.92 = 0.08 ft (b) 20 − 4 mA Km ‧ 1 ,2 6 mA / ft 10 ft 15 − 3 K IP ‧ 0.75 psi / mA 20 − 4 K V ‧ 0.4 cfm / psi K ‧ 5 and c We have: K OL ‧ K m K k K IP VV G p ‧ 1.6 ‧ 5 ‧ 0.75 ‧ 0.4 K p ‧ 2.4 K p Displacement equals equal to: M 22 − 20 offset ‧ ‧ 0.08 1 ο K
OL 1 ο 2.4 K p K p ‧ 10 ft / cfm (c) Add integrated action to eliminate 11-29 11.24 The open loop process transfer function is: Kp 2 Gp ‧ ( ‧ 1s ο 1) (2 s 1) (4s ο 1) (1) The controller transfer function is: 1 1 Gc ‧ K c (1 ο) ‧ 2 ο Is 2s (a) According to Eq. 11-26, the closed loop transfer function for the monitoring of a specified point is : 2
1 ο (2 ) K m G p Gc Gv Y (4s 1)(s 1) 2s ‧ 2 1 Ysp 1 g g p Gc Gv 1 ) ( 2 ) (4s ) 1)(s 1) 2s 2 2 1 1 ο (2) K m G G Gg GV Y 1 (4s 1) (s 1) 2s ‧ ‧ 2 2 1 Ysp 1 ο Gm G p Gg gg s ο s ο1 1 ο ( 2 ο) (4s ο 1) (s ) 1) 2s The closed loop transfer function is : Y 1 ο 2 Ysp s ο 1 (b) The characteristic equation is the denominator of the closed loop
transfer function, which is a model (g = 0.5): s2 ο s ο1 (c) For the analysis of stability, Gc ‧ K c (1 ο 1 ) is replaced in 1 gg p gcgv 4s and we get : 1 g m G p Gc Gv ‧ 1 ο 2 1 ο 4(1 ) (4s ) 1) (1) 4s 2s(s) 1 ) Kc 2s 2s 2s Kc ο 2s(s) 2s(s) 2s(s) 1) To find the stability area, the roots of the polynomal numerator should be in the right half level.
For this 2nd class polynomal, this means: Kc  0 ‧ 11-30 Kc can be arbitrarily large for this controlled pi second order system and still maintain stability. 11.25 First we use Eq. 11-26 to get the closed loop transfer mode 10 Y 10 10 (s + 1) (2s + 1) = = = 2 10 (s + 1) (2s + 1) + 10 2s + 3s + 11 Ysp 1 1 + (s + 1)(2s + 1) Or in standard
format 10/ Y 11 = 2 2 3 Ysp 11 s + 11 s + 1 g= 3√22 44 t= √22 11 The time at which the maximum is displayed is given by Eq. 5-52 tp = d / √1 − g2 tp = 1.41 (b) The response is given by Y(s) = 20 s(2s 2 + 3s + 11) The Final Value Theorem gives the constant state value as y(∞) = 20 11 Removing the constant state value from the
specified point change gives a offset= 2 11 11-31 (c) The oscillation period is given by Eq. 5-55 P= 2nd P = 2.83 2 √1 − g (d) Figure S11.25 y(t) responses as a function of time. Tip: You don't need to get the detailed answer y(t) to answer the above questions. Use the standard second order model expressed in g and t (see Chapter 5).
11.26 The closed loop transfer function for a specified point change (Eq. 11-26), is given by km Gc Gv Gp Y = Ysp 1 + Gc Gv Gp Gm 11-32 Replacing the values above and partially (a), we get, Y Kc E = Ysp 1 + Kc E Multiplication with a unit step change at the specified point gives Y(s) = Kc E 1 Kc E ⟹ y(t) = 1 + Kc E s s 1 + Kc E A
sketch may look like this (the step change to t = 5) Kc E 1 ο Kc E Shape S11.26a Step response to unit step change with proportional control. As evidenced by the there is a offset for this controller. For part (b), we substitute prices in Eq. 11-26 to get Y E 1 = =t I Ysp tI s + E Es+1 Multiply with a unit step change at the specified point gives
1 1 E Y (s) = t ⟹ y (t) = 1 − exp (− t) I s tI Es+1 11-33 A sketch would look like this figure S11.26b Response step to unit step change with built-in control As shown in the sketch , there is no offset for this controller. 11.27 8 ο s ο 2 gd Y 8 ‧ ‧ 3 2 D 1 gcGvG pGm 1 ο K ‧1 ‧ 8 ‧1 s ο 6s ο 12s The characteristic equation for the above
appears as: s 3 ο 6s 2 ο 12s ο 8 ο 8K c c ο 0 Replacement s=j‧ in the above equation , we have: −6‧ 2 ο 8 ο 8K c 12 ‧ ‧ 3  j ‧ 0 3 So, we have: --6‧ 2 ο 8 ο 8 K c ‧ 0  ‧ ‧ 2 3   3 ‧ 12 ‧ ‧ 0 ‧ k x ‧ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , applying the final value theorem: s 11-34 1   8 ‧  1 s Offset: lim y ο t ‧ lim ‧ s 3 ‧  3 ‧  t ο  s ο0 ‧ s • 6s ο 12s ο 8 ο 8K c  1 ο K c   (b) 8 ο s ο 2 ο Gd Y ‧ D 1 ο GcGvG p Gm
3 ‧ 8 ‧ 1   8 ο S 2   K c  I s  1  K c 1  �1  � 1� 3  s  2  Είναι  1 Για μια αλλαγή βήματος D  , εφαρμόζοντας το θεώρημα τελικής αξίας : s 1   8 Είναι   s Offset: lim y  t   lim  s 0 3 t  s 0  s  2  K   1     c I        So there is no compensation for the
PI controller. 3 11.28 Closed loop transfer function for fixed point changes is given by km Gc Gv Gp Y = Ysp 1 + Gc Gv Gp Gm Replacing information in the problem gives Y Kc (s + 3) Kc (s + 3) = = Ysp (s + 1) (0.5s + 1)(s + 3) + 3Kc 0.5s 3 + 3s 2 + 5.5s + 3 + 3Kc So, the characteristic equation is 0.5s 3 + 3s 2 + 5.5s + 3 + 3Kc = 0
Replacement s = j‧ in the above equation , we have: −3 ‧ 2 ο 3 ο 3K c 5,5 ‧ − 0,5 ‧ 3  j ‧ 0 So, we have: --3‧ 2 ο 3 ο 3K c ‧ 0  ‧ ‧ 11   3 5.5 ‧ − 0.5 ‧ ‧ 0 , ‧ K c ,max ‧ 10 ‧ 11-35 So, responses to parts (a)-(c) are: (a) stable (b) unstable (c) unstable The following plot shows simulink responses and
confirms the above answers : Figure S11.28 y(t) replies with different Kc 11.29 a) Analog controller: We draw the transfer function as follows: K mGc GvG p Y ‧ YSP 1 gmgc Gv G p Kc 1 οs ο 1 ο Kc Kc Y ‧ 3 3 2 1 YSP 1 ο K ο s ο 1 ο K c s ο 3s ο 3s ο 1 k c c 3 ο s its equation (1) is as follows: (1) s3 ο3s 2 ο 3s ο 1 ο K c ‧ 0
Replacement s=j‧ in the above equation, we have: (2) 3 11-36 −3 ‧ 2 ‧ 1 ο K ο 3 ‧ ‧ 3  j ‧ 0 So we have: --3 ‧ 2 ο 1 ο K c ‧ 0  ‧ ‧ 3   3 ‧ 3 ‧ ‧ ‧ 0 ‧ C ,max ο. (3) 3 Kc=7.9 Kc=8 2.5 Kc=8.1 2 Y 1.5 1 0.5 0 -0.5 -1 0 50 100 150 Time (min) Figure S11.29a: System response to a change in unit set point. Note
that the system is stable at Kc=7.9, marginally stable at Kc=8, and unstable at Kc=8.1. b) PD controller: We draw the transfer function as follows: Gc ‧ K c ο1 ο D s ‧ K mGc Gv G p Y ‧ YSP 1 ggc Gv G p K c ο1 ο D s 1 οs ο 1 ο Y ο 1 1 ο K 1 ο s c ο D ο 3 ο s ο 1 ο 3 K ο ο d s ο 1 ο s ο 3s ο 3s ο 1 ο K c ο D K c s 3 2 where Kc=10. 11-
37 , (4) The characteristic equation of (4) is as follows: s3 ο 3s 2 ο ο10 ο D ο 3 ο s ο 11 ‧ 0 (5) Replacement s=j in the above equation, we have: −3 ‧ 2 ο 11 ο  10 ‧ D ο 3 ‧ ‧ ‧ 3  j ‧ 0 So we have: 2 1  −3 ‧ 11 ‧ 0 ☐ ‧ D , min ‧ 0.0667  3 15 ‧ 10 ‧ D ο 3 ‧ ‧ ‧ ‧ 0 \tau_d=0.1, fixed 1.8 1.6 1.4 reply 1.2 1 0.8
0.6 0.4 0.2 0 0 10 20 30 40 50 time 60 70 80 90 100 80 90 100 Mr D &gt; tD,min (i) \tau_d=0, unstable response 1500 1000 500 0 -500 -1000 -1500 0 10 20 30 40 (ii) 50 time 60 70 &lt; tD ,min Figure S11.29b Simulation results of different TD settings 11-38 Chapter 12 © 12.1 For K = 1, ‧1=10, ‧2=5 and ☐=0, the PID controller settings
are obtained using Eq.12-14 as Kc ‧ 1 ‧1 ο 2 15 ‧ K ‧c ‧c , ‧I = ‧1+2=15 , ‧D ‧ ‧1 ‧ 2 ‧ 3.33 ‧1 ο 2 The characteristic equation for the closed loop system is      1 1.0 ο 1 ο 1 ο It is a substitute for kc     For the closed loop system to be stable, the coefficients of this polynomal first battalion in s
must be positive. Thus, c &gt; 0 and (1+) &gt; 0 ☐ ‧ &gt; −1. Results: a) The closed loop system is fixed for ◊ &gt; −1 b) Select ‧c &gt; 0 c) The choice of ‧c does not affect the soundness of the system in changes to the ‧. [Type here] 12-1 [Type here] 12.2 4(1 − s ) s a) Let G ‧ G . Producing the model as G ‧ GV G p Gm ‧ G ‧ G]
with: 4 s The controller design equation in (12-20) is: 1 G *c f G− G ‧ 1 − s, G, ο given first class filter, 1 f ‧cs ‧1 Substitute, G *c ‧ 1 s 4 ‧cs ο1 b) The equivalent controller in the classical feedback control configuration in Figure 12.6(a) is: G*c Gc ‧ 1 − G *c G Substitute to give, 1 4(c) 1) So Gc is analog controller. Gc ‧ 12.3 For the
FOPTD model, K = 2, ο = 1 and - = 0.2. (a) Use of entry G in Table 12.1 for οc = 0.2 Kc ‧ b) ο K (c ) ‧ 1 ‧ 1.25 2(0.2 ο 0.2) ‧ I ‧ ‧ ‧ 1 Using entry Z in Table 1 2.1 for οc = 1 1 2-2 Kc ‧ K (c ) ) ) ‧ 1 ‧ 0.42 2(1 ο 0.2) ‧I ‧1 c) From Table 12.4 for change of disorder KKc = 0.0859(-)-0.977 or ο//I = 0.674(- ‧0.680 or d) Kc = 2.07
‧I = 0.49 From Table 12.4 for change of specified point KKc = 0.0.49 From Table 12.4 for change of setting point KKc = 0 .0.49 586(-)-0.916 or Kc = 1.28 ‧/I = 1.03 −0.165(-/)) or ‧I = 1.00 e) Conservative settings correspond to low Kc values and high values .I. Clearly, the IMC method (-c = 1.0) of part (b) gives the most conservative
settings; the ITAE method in Part (c) provides the least conservative arrangements. The controller setting for (a) and (d) is essentially identical. f) A comparison for unit disturbance in the unit is shown in figure. S12.3 Figure S12.3. Compare PI controllers for unit step disturbance. 12-3 12.4 The process model is, G(s) ‧ 4e--3s s (suppose
the time delay has minute units) (1) (a) Analog control only, Gc(s) =Kc. s 4 K c e--3s ‧ 0 Replace the stability limit conditions from section 11.4.3: s = j, ο = ‧u, and Kc.= Kcu: j-u ο 4 K cu e--3-u j ‧ 0 (2) Apply the identity of Euler, e--ij ‧ cos(i) − j sin(i) : e−3‧u j ‧ cos(3‧u ) − j sin(3)u ) Substitute in (2), j u ο 4Kcu [cos (3‧u ) − j sin(3)u
)] ‧ 0 Collection of terms for real and imaginary parts: 4Kcu cos(3)u ) ‧ 0 (3) ‧u − 4Kcu sin(3)u ) ‧ 0 (4) For (4)3) , because Kcu ο 0 , is as follows: p 2 (5) p ‧ 0.5236 rad/min 6 (6) cos ( 3 ‧u ) = 0 ☐ ‧u ‧ ☐ 3 ‧u ‧ From (4) – (6) , ο 0,0 5236 ‧ 4 K cu sin ( ) ‧ 0 ☐ K cu ‧ 2 12-4 0.5236 ‧ 0.130 4 (b) Controller settings using the
AMIGO method The model parameters are: K ‧ 4, - =3 For this model, use the right column of table 12.55. 0.35 0.35 ‧ 0.029 K-12 ‧ ‧ 13.4- ‧ 13.4(3) ‧ 40.2 Kc ‧ 12.5 Suppose the process can be sufficiently shaped by the first class co-time delay model in Eq. 12-10. Step response data and the tangent line at the inflection point for
the Chapter 7 tilt-intersection recognition method are shown in figure. S12.5. 18 17 Exit 16 15 14 13 12 0 2 4 6 8 10 12 Year Old Figure S12.5. Response data step and tangent line at the inflection point. These estimated model parameters are: psi psi  16.9 − 12.0 mA    = 1.65 K = KIP Gv(KpKm) = 0.75 ) 0.9 mA   20 −
18 psi  - = 1.7 minutes - + ο = 7.2 minutes ☐ a) ο = 5.5 minutes From -/- &gt; 0.25, a conservative option :c = min. In case H of Table 12.1 is used 12-5 1 . Thus, c = 2.75 2 θ  1 2  1.76 Kc  K  θ c 2 I   b) θ  6.35 min, 2 D  θ  0.736 min 2  θ From Table 12.6, the AMIGO tuning parameters are: 1
 1  5.5   0.2  0.45    0.2  0.45  1 K   1.65  1.7  0.4  0.8 0.4(1.7)  0.8(5.5) I   (1.7)  3.8 min   0.1 1.7  0.1(5.5) 0.5 0.5(1.7)(5.5) D    0.78 min 0.3   0.3(1.7)  5.5 Kc  c) From Table 12.4, the ITAE PID settings for a step disturbance are KKc = 1.357(/)-0.947 or
Kc = 2.50 /I = 0.842 (/)-0.738 or I = 2.75 min D/ = 0.381 (/)0.995 or D = 0.65 min d) The most aggressive controller is the one from part c, which has the highest value kc and the lowest value of tI 12.6 The model for this procedure has K=5, t=4 and i=3. The PI controller parameters for a FOPDT model that uses an
IMC setting are given with the G entry in table 12.1: Kc ο K (- c ) ‧ 4 ‧ 0.13 5(3) 3) The parameters for a PID controller are given with the entry H in table 12.1: 12-6 - 3 2 ‧ 2 ‧ 0.24 Kc ‧ ‧ ‧ ‧ ‧ 3 K () ο) 5(3) 2 2 - 3 ‧ ‧ ‧ ‧ 4 ο 5.5 2 2 ο- 4 paragraph 3 ‧ D The simulated procedure for changing steps at the specified point is
planned below for both PI and PID controllers. Note that the PID controller was applied in the correct format to eliminate kick derivatives (see chapter 8). Figure S12.6: Responses to a step change at the specified point in t = 1 for PI and PID controllers. The PID controller allows the controlled variable to reach the new adjustment point
faster than the PI controller because of the higher Kc value. The reason the Kc may be larger is that, after the controlled variable begins to change and move to the specified point, the derived term can put on the brakes and slow down the aggressive action so that the controlled variable lands nicely at the specified point. 12-7 12.7 a.i) The
Skogestad model reduction approach provides the following approximate model: G(s) ‧ e −0.028s (s ) 1)(0.22s 1) Since (g)- &lt; 0.25, an aggressive option -c = - 0.028. Από την περίπτωση Ι στον πίνακα 12.1 με 3 = 0, οι ρυθμίσεις IMC είναι: Kc  1 1   2  21,8 K c     1   2  1,22, a.ii) D   1 2  0,180
1   2 Για να χρησιμοποιήσετε τις σχέσεις συντονισμού AMIGO Table 12.6, the Skogestad model reduction method can be used to reduce the model to a FOPDT model. The resulting FOPDT time constant is the longest time constant in the full order model plus half of the next longest time constant, 1 + 0.5(0.2) = 1.1. The resulting
FOPDT time delay is half of the second longest time constant in the full series model, 0.5(0.2) = 0.1. The other shorter time constants are neglected. e--0.1s G(s) ‧ 1.1s ο1 Amigo rules for a PID controller in table 12.6 give: 1 ‧  1.1  ο 0.1 2 ο 0.45  ‧ 0.2 ο 1 0.45  ‧ 5.15 K ‧  ‧ 0.1  0.4- ο 0.8 ‧ 0.4(0.1) ο 0.8(1)I ‧ --
(0.1) ‧ 0.44 ο 0.1 ο 0.1 ο 0.1(1.1) 0.5 ο 0.5(0.1)(1.1) ο -D ‧ ‧ 0.049 0.3- ο 0.3(0.1) ο 1.1 Kc The simulation results presented in Figure S12.7 indicate that the IMC controller is superior for step disturbance due to the lower maximum deviation and lack of oscillations. This result makes sense since we made an aggressive choice for the
tC for the IMC controller. 12-8 Figure S12.7. Closed loop responses to unit step disturbance in t=1. 12.8 From Eq. 12-40 (with c=0): 1 dy  p (t) ‧ p ο K c  ο ysp (t) − ym (t)  ο K c ¦  e(t*)d t * ¦ D m  dt   This control law can be applied with Simulink as follows: : SET-POINT STATION CONTROL ß + +- ANALOGIC
ENERGY K C + + PRODUCTION OF INTEGRAL ACTION CONTROL - INPUT CONTROL 12-9 Closed loop responses are compared for four values b : 1, 0,7, 0,5 &amp; 0,3. Figure S12.8. Closed loop responses for different values b. As shown in Figure S12.8, as b increases the response of the adjustment point becomes faster, but is
more exceeded. The value of b =0.5 seems to be a good choice. The disturbance response is independent of the value of b. 12.9 (a) From Table 12.2, The controller settings for the series form are as follows:  ο  K c ‧ K c ο ο1 ο D ο I   ‧ 0.971  ο ο I ο ο D ο D ‧D ‧D ‧D ‧D ‧ ‧D ‧ 2,753 ‧
D the closed loop responses created by Simulink appear in fig. S12.9. The series format leads to more oscillating responses. Thus, it produces more aggressive control action for this example. b) By changing the derivative term in the controller block, simulink results show that the system becomes more oscillating as it increases.D. For
parallel form 12-10, the closed loop system becomes unstable for ‧D ‧ 5.4. for series format, becomes unstable for ‧D ‧ 4.5. 3 Form of parallel form Form Series format 2.5 2 y(t) 1.5 1 0.5 0 0 50 100 150 200 250 300 Year Figure S12.9. Closed loop responses for parallel series controller forms and forms. 12.10 a) Block diagram X1'
Gd X'sp E X'sp Km (mA) +- W'2 P' Gv (mA) (mA) X'm (mA) Gm 12-11 Gp (Kg/min) + + X' X' Process transfer and disturbance functions: Total material balance: w1 w2 − w ‧ 0 Solute balance: (1) dx (2) dt Substitution (1) to (2) and placement in deviation variables: w1 x1 w2 x 2 − wx V w1 x 1 w2 x2 − w1 x  − w2 x − w2 x ‧ v dx
 dt Download the Laplace transformation: w1 X 1(s) ( x2 − x )) W2(s) ‧ (w1 ο w2 ο Vs) X (s) End: x2 − x x2 − x w w2 X (s) G p (s) ‧ ‧ 1 W2(s) w1 w2 ‧Vs 1 1 οs w1 w1 w ο w2 X (s) Gd (s) ‧ ‧ 1 x 1 (s) w1 ο w2 ο Vs 1 οs where ‧ ο V w1 ο w2 Substitution of numeric values : 2.6 ‧ 10 −4 G p (s) ‧ 1 ο 4.71s Gd (s)
‧ 0.65 1 ο 4.71s Composition measurement function: Gm (s) ‧ 20 − 4 − s e 32e − s 0.5 Final control transfer mode: 12-12 GV(s) ‧ 15 − 3 300 / 1.2 187.5 ‧ ‧ 20 − 4 0.083 1 0.0833s 1 Controller: Leave the G ‧ GV G p G m ‧ then G ‧ 2.6 ‧ 10 −4 187.5 32e − s 0.0833s ‧ 1 1 ο 4.71s 1.56e − s (4.71s ) 1)(0.0833s 1) For the
process with a dominant temporal constant, ‧ c ‧ dom / 3 is recommended. Therefore. ‧ c ‧ 1.57 minutes. From Table 12.1 Kc = 1.92 and I = 4.71 minutes (c) Simulink Results: 0.04 0.035 0.03 0.025 y(t) 0.0 2 0.015 0.01 0.005 0 0 5 10 15 20 25 30 35 Time-save S12.10c. Closed loop response for step disturbance. 12-13 d) Figure
S12.10d shows that ‧ c ‧ 1.57 minutes gives very good results. 0 -0.02 -0.04 y(t) -0.06 -0.08 -0.1 -0.12 0 2 4 6 8 10 12 14 16 18 20 Chronology S12.10d. Closed loop response to change adjustment point. Improved control can be achieved by adding derivative action: ‧ D ‧ 0.4 minutes. (e) 0 -0.02 -0.04 y(t) -0.06 -0.08 -0.1 -0.12 0 2 4
6 8 10 12 14 16 18 20 Chronology S12.10e. Closed loop response after adding derived energy. 12-14 f) For ☐ = 3 minutes, the closed loop response becomes unstable. It is known that the presence of a long time delay in a feedback control loop limits its performance. In fact, a time delay adds phase delay to the feedback loop, which
negatively affects the stability of the closed loop (see Ch 13). Consequently, the auditor's profit should be reduced below the price that could be used if there were a shorter time delay. 0.6 0.4 0.2 0 y(t) -0.2 -0.4 -0.6 -0.8 0 5 10 15 20 25 30 35 Chronology S12.10f. Closed loop response for - = 3 minutes 12.11 The decision to reset the
controller is based on the characteristic equation, which takes the following form for the standard feedback control system. 1 + GcGI/PGvGGGm = 0 The PID controller may need to be reset if any of the transfer modes, GI/P, Gv, Gp or Gm, change. a) Changes gm. The controller may need to be reset. b) Zero does not affect gm.
Therefore, the controller does not require resetting. c) Changes Gv. Resetting may be necessary. d) GP changes. The you may need to 12-15 12.12 2e-s The model of the procedure is given as follows: G ‧ 3s ο 1 a) From Table 12.1, the IMC settings are: Kc ‧ 1 ‧ 0.75 K ο c ο i ‧ ‧ ‧ 3min b) Cohen-Coon coordination relationships:
Kc ‧ 1 ‧ &lt;1&gt; &lt;5&gt; ‧1,3 ‧9 Kd ‧I ‧ 3 ‧ 1,39 Kd ‧I ‧i[30 ο 3(i / ‧ ‧ 1,98 minutes 9 ο 20 (i / ) IMC settings are more conservative because they have a lower Kc value and a higher value ‧I. c) Simulink simulation results appear in the Figure. S12.12. Both controllers are rather aggressive and produce oscillating
responses. The IMC controller is less aggressive (that is, more conservative). 1.8 Cohen-Coon IMC 1.6 1.4 1.2 y 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 Chronology S12.12. Controller comparison. 12-16 60 70 12.13 From solution to exercise 12.5, the process reaction curve method yields, K = 1.65, - = 1.7 minutes, ‧ = 5.5 minutes (a) IMC
method: From Table 12.1, controller G with οc = ο/3: 1 ο 1 5.5 ‧ 0.94 K ο c - 1.65 (1.65 (1.65 ( 1.65 (1.65 5.5 / 3) ο 1.7 ‧I = ο = 5.5 minutes Kc ‧ b) Ziegler-Nichols settings: G(s) ‧ 1.65e--1.7 s 5.5s 1 First, determine stability limits; the character equation is: 1 + GcG = 0 Substitute the Padé approval, e− s � 1 − 0.85s 1 ο 0.85s into the
character teristic equation: 0 = 1 + GcG ‧ 1 ο 1.65K c (1 − 0.85s ) 4.675s 2 ο 6.35s ο 1 Rearrange , 4.675s2 + (6.35 –1.403Kc)s + 1 + 1.65Kc = 0 Substitute s=ju at Kc = Kcu:  4.675 u2 + j(6.35  1.403Kcu) u + 1 +1.65Kcu = 0 + j0 Equate real and imaginary coefficients, (6.35  1.403Kcu)u = 0 , 1+ 1.65Kcu  4.675 u2 = 0
12-17 Ignoring u= 0, the approximate values are: Kcu = 4.53 and u= 1.346 rad/min Pu  2  4.67 min u The Z-N PI settings from Table 12.7 are: Kc = 2.04 and I = 3.89 min (approximate) Note that the values of Kcu and you are approximate due to the Padé approximation. Using Simulink, you can get more accurate values
with trial and error. In this case, no Padé approach is required and: Kcu = 3.76 Pu = 5.9 minutes The Z-N PI settings from Table 12.7 are: Kc = 1.69 ‧I = 4.92 minutes (more accurate) Compared to the Z-N settings, the IMC method setting gives a smaller Kc and a larger I, and therefore provides more conservative controller settings.
12.14 Eliminate the effect of the feedback loop by opening the loop. That is, they operate temporarily in open loop mode, changing the controller to manual mode. This change provides a fixed controller output and a fixed manipulated input. If oscillations persist, they must be due to external disturbances. If the oscillations disappear, they
were caused by the feedback loop. 12.15 The sight glass has confirmed that the level of the liquid is rising. Because the controller output is saturated, the controller works fine. Therefore, whether the feed flow is higher than recorded, the flow of liquid is is or both. Because flow transmitters consist of orifice plates and differential pressure
transmitters, a connected orifice plate could lead to a higher recorded flow. Therefore, the plate of the ore of the liquid flow would be the prime suspect. 12-18 12.16 a) IMC design: From Table 12.1, Controller H with οc = ο/2 =3.28 min is: 1 t/h/ 2 1 6.5 ο 2/2 ‧ K t c ο i / 2 220 3.25 ο 2 / 2 Kc ‧ K c ‧ 0 .00802 ti ο td ο i 2 ‧ 6.5 ο 7.5 min 2
2 tt (6.5)(2) ‧ 0.867 min 2t+i 2(6.5) ο 2 b) Relay auto tuning (RAT) controller From the documentation for the RAT results, it follows that: a = 54, d = 0.5 From (12-46), K cu ‧ 4d 4(0.5) ‧ 0.0118 ο a ο (54) Pu ‧ 14 min From Table 12.7, the Ziegler-Nichols controller settings are: K c ‧ 0.6 K cu ‧ 0.0071 ‧I ‧ Pu ‧ 7 min , 2 ‧D ‧ 12-
19 Pu ‧ 1.75 min 8 c) Simulation results Hydrocarbon temperature (K) 620 610 600 590 580 0 2 0 40 t (min) 60 80 Oxygen output concentration (mol/m 3) Closed loop responses for IMC and RAT controller settings and step change in power composition from 0.5 to 0.55 are displayed in Figs. S12.16a and S12.16b, respectively. 0.9 0.8
0.7 0.6 0.5 0 20 40 t (min) 60 80 20 40 t (min) 60 80 19 Airflow rate (m 3/min) Gas flow rate fuel (m3/min) 1.6 1 1.5 1.4 1.3 0 20 40 t (min) 60 80 18.5 18 17.5 17 16.5 0 Fig. S12.16a. Performance of the IMC-PID controller for step change in hydrocarbon flow from 0.035 to 0.040 m3/min. 12-20 Fig. S12.16b. Rat controller performance for
step change in hydrocarbon flow from 0.035 to 0.040 m3/min. d) Due to the high noise level for the xD response, it is difficult to obtain improved controller settings. Rat settings are considered satisfactory. 12-21 12.17 (a) IMC plan: From Table 12.1, Controller H with οc = ο/2 =381 is: 1 t/ 2 1 762 ο 138 / 2 ‧ K t c ο i / 2 0.126 381 ο 138 / 2
Kc ‧ K c ‧ 14.7 ‧ ‧ ‧ 138 ‧ 762 ‧ 831min 2 2 t (762)(138) ‧ Automatic relay adjustment controller (RAT) ‧ ‧ 63 ,3 minutes 2t+i 2(762) ο 138 b) automatic relay adjustment controller (RAT) The distillation column model includes a RAT option for the xB control loop; but not the xD control loop. Thus, the Simulink diagram must be
modified by copying the RAT loop for xB and adding it to the xD portion of the diagram. Also, the parameters for the relay block must be changed. The new Simulink diagram and appropriate retransmission settings are displayed in Fig. S12.17a. Rat results are shown in Fig.S12.17b. it follows that: a = 5.55 x 10-3, d = 0.2 From (12-46), K
cu ‧ 4d 4(0.2) ‧ 45, From Table 12.7, the settings of the Ziegler-Nichols controller are: K c ‧ 0.6 K cu ‧ 27.5 ‧ I ‧ Pu P ‧ D ‧ u ‧ 119 s 2 8 Fig. S12.17a. Modified Rat Simulink diagram and relay settings. 12-23 Fig. S12.17b. Results from rat. c) Simulation results Closed loop responses to the IMC and RAT controller settings and
a step change in feed composition from 0.5 to 0.55 are shown in Figs. S12.17c and S12.17d, respectively. The RAT controller provides a somewhat better response with a smaller maximum deviation and a shorter settlement time. d) Due to the high noise level for the xD response, it is difficult to obtain improved controller settings. Rat
settings are considered satisfactory. 12-24 Fig. S12.17c. Performance of the IMC-PID controller for step change in power composition from 0.5 to 0.55. 12-25 Fig. S12.17d. Performance of the RAT controller for step change in power composition from 0.5 to 0.55. 12-26 Chapter 13 © 13.1 In accordance with Guideline 6, the manipulated
variable should have a large effect on the controlled variable. Clearly, it is easier to control a liquid level by handling a large output flow, rather than a small current. Because R/D &gt;1, the regression flow rate R is the preferred variable to be manipulated. 13.2 The output flow rate w4 has no effect on x3 or x4 because it does not change
the relative quantities of materials mixed. The bypass fraction f has a dynamic effect on x4, but has no fixed state effect, because it also does not change the relative quantities of materials mixed. So w2 is the best option. 13.3 Both stable and dynamic behaviours must be taken into account. In terms of steady state, the temperature of the
TR regression flow would be a bad choice because it is insensitive to changes in xD because of the small denomination of 5 ppm. For example, even a 100% change from 5 to 10 ppm would result in a negligible change in TR. Similarly, the temperature of the top disk would be a bad choice. An intermediate disk temperature would be
more sensitive to changes in disk composition, but may not be representative of xD. Ideally, the disk location should be selected to be the highest disk in the column that still has the desired degree of sensitivity to compositional changes. Choosing an intermediate disk temperature offers the advantage of early detection of feed disorders
and disturbances coming from the stripping section (below) of the column. However, it would be slow to respond to disturbances coming from the condenser or from the regression drum. But overall, an intermediate disk temperature is the best option. 13.4 [Press here] 13-1 [Press here] For the flooded condenser in Fig. E13.4, the area
available for heat transfer changes as the level changes Liquid. Therefore, pressure control is easier when the liquid level is low and more difficult when the level is high. In contrast, for the conventional design of the process in Figure 13.2, the level of the liquid has very little effect control loop. Thus, the flooded condenser is more difficult
to control because the level and pressure control loops interact more, than for the conventional design of the process in Figure 13.2. 13.5 (a) The larger the tank, the more efficient the damping disturbances in the reactor output stream will be. A large capacity tank also provides a large feed inventory for the distillation column, which is
desirable for periods when the reactor is closed. Thus a large tank is preferred from a process control perspective. However a large tank has a high capital cost, so a small tank is attractive from a stable-state, design perspective. Thus, the choice of the size of the storage tank includes an exchange of control and design objectives. (b)
Following the change of the adjustment point in the output composition of the reactor, it would be desirable that the output configurations for both the reactor and the storage tank be changed to the new values as soon as possible. But the concentration in the storage tank will gradually change due to the fluid inventory. The time constant
for the storage tank is proportional to the mass of the liquid in the tank (see models of mixing systems in chapters 2 and 4). Thus, a large storage tank will lead to sluggish reactions to its output composition, which is not desirable when frequent set-point changes are required. In this case, the size of the storage tank should be smaller than
for case (a). 13.6 Variables : q1, q2,.... q6, h1, h2 Equations : 13-2 Nv= 8 Three flow-head ratios: q3 ‧ CV 1 h1 q5 ‧ CV 2 h2 q4 ‧ f (h1 , h2 ) Two mass retention equations: dh1 ‧ ( q1 ) q6 − q3 − q 4 ) dt dh ‧A2 2 ‧ (q2 q4 − q5 ) dt ‧A1 Concludes: NE = 5 Degrees of freedom: = NF = NV – NE = 8 − 5 = 3 variable Disorder : q 6 ☐
ND = 1 NF = NFC + ND NFC = 3 − 1 = 2 13.7 Consider the following energy balance assuming reference temperature Tref = 0: Heat exchanger: Cc (1 − f )wc (Tc 0 − Tc1 ) ‧ Ch wh (Th1 − Th 2 ) (1) Cc wc (Tc 2 − Tc1 ) ‧ Ch wh (Th1 − Th 2 ) (2) wc ( 1 − f)wc ) fwc (3) Total : Mixing point: Thus, 13-3 NE =3 , NV = 8 (f , wc, wh, Tc1, Tc 2
, Tc 0 , Th1, Th 2) NF =− NV NE = 8 − 3 = 5 NFC = 2 (f, wh) also ND = NF − NFC = 3 (wc, Tc1, Tc2) The degree of freedom analysis is identical for both the current flow and the opposite flow, because the mass and energy balances are the same for both cases. 13.8 The dynamic model consists of the following balances: Mass balance in
the tank: hx3 ) ‧ (1 − f) x1 w1 x 2 w2 − x3 w3 dt (2) Mixing point balances: w4 = w3 + fw1 x4w4 = x3w3 fx1w1 (3) (4) So , NE = 4 (Eqs. 1-4) NV = 9 (h, f , w2 , w3 , w4 , x1 , x2 , x3 , x4 ) NF = NV − NE = 5 13-4 Since three flow rates ( fw1 , w2 and w3 ) can be adjusted independently, it seems that there are three degrees of freedom
control. But the bypass flow rate, fw1, has no steady state effect on x4. To confirm this claim, consider the total balance of the constant state element for the tank and the mixing point: x1 w1 x2 w2 ‧ x4 w4 (5) This balance does not depend on the fraction being bypassed, f, either directly or indirectly, Conclusion: NFC = 2 (w2 and w4)
13.9 (a) To analyze this situation, consider a stable situation analysis. Assumptions: 1. Fixed state conditions with w, Th and Tc in their denominations. 2. Fixed heat capacities 3. No heat loss 4. Perfect mixing Steady-state balances: wc ο wh ‧w (1) wcTc ο whTh ‧ wT (2) Suppose T = Tsp, where Tsp is the specified point. wc wh ‧ w
(3) wcTc ο whTh ‧ the equations wTsp (4) (3) and (4) are two independent equations with two unknown variables, wh and wc. For any arbitrary value of Tsp, these equations have a unique solution. Thus, the proposed multi-purpose control strategy is feasible. This simple analysis does not prove that the liquid h level can also be
controlled at an arbitrary hsp point. However, this result may be demonstrated 13-5 by a more complex theoretical analysis or by simulation studies. b) Examine the steady state model on (1) and (2). Replacing (1) to (2) and resolving T gives: T- wcTc ο whTh wc (5) Since w does not appear in (5), it has no fixed state effect on T.
Therefore, the proposed multi-purpose control strategy is not feasible. 13.10 (a) Standard degrees of freedom, NF NF = NV - NE (13-1) NV = 11 (xF, TF, F, wL, L, wV, V, T, P, h, VT) where TF is the power temperature and VT is the volume of the flash separator. NV = 7: Mass Balance Elements Balance Energy Balance Steam-liquid
Balance Relationships Valves (2) Ideal Gas Law So, (b) NF = 11 – 7 = 4 Degrees of Freedom Control, NFC NF = NFC + ND (13-2) Usually, some knowledge of power conditions would be available. We are looking at two cases: Case 1: xF and TF are disturbance variables Here ND = 2 and: 13-6 NFC = NF - ND = 4 - 2 = 2 The two
degrees of freedom can be used by manipulating two of the three flow rates, for example, V and L, or F and V. Case 2: xF, TF, and F are disturbance variables Here ND =3 and: NFC = NF - ND = 4 – 3 = 1 The single degree of freedom could be used by manipulating one of the output flow rates, either V or L. 13-7 Chapter 14 14.1 AR ‧ G
( j) ‧ ‧ ‧ 3 G1 ‧) G2 (j)) G3 (i)) 3 (−)) 2 ο 1 ο (2‧) 2 ο 1 ‧ 3 ‧2 ‧ 1 ‧ 4 ‧ 2 ο 1 From the declaration , we know that the period P of the sinusoidal input is 0.5 minutes and, therefore, ‧ ‧ 2 ‧ 2 ‧ ‧ ‧ 4 ‧ rad/min P 0.5 Replacing the numeric value of the The range of the resulting temperature oscillation is 0.24 degrees. 14.2
First approximate term as the first two terms in a truncated Taylor series e s � 1  s Then G( j)  1  j and ARtwo term  1  () 2  1  2  2 two term  tan 1 ()   tan 1 () Solution Manual for Process Dynamics and Control, 4th edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar,
Duncan A. Mellichamp, and Francis J. Doyle III 14-1 For a first-order Pade approximation s 2 e s � s 1 2 from which we obtain 1 AR Pade  1     Pade  2 tan 1    2  Both approximations represent the original function well in the low frequency region. At higher frequencies, the Padéapproximation
approach exactly matches the range ratio of the time delay element (ARPade = 1), while the two-term approach introduces amplification (ARtwo &gt;1). For the phase angle, the high-frequency representations are:  two - term −90 Pade − −180‧ Since the angle of e − j) is negative and becomes unlimited as ‧ ο  , we see that the
Pade representation also provides the best approach to the phase angle of the time delay element, assigning  of the net time delay element to a higher frequency than the representation diode. 14.3 Nominal temperature T  128 F  120 F  124 F 2 1 Aˆ  (128 F  120 F)  4 F 2   5sec.,   2(1.8 / 60 sec)  0.189 rad/s
Using Eq. 13-2 with K=1, A  Aˆ    2 2  1  4 (0.189)2 (5)2  1  5.50 F Actual maximum air temperature = T  A  129.5 F Actual minimum air temperature = T  A  118.5 F 14-2 14.4 Tm ( s ) 1  T ( s ) 0.1s  1 T ( s)  (0.1s  1)Tm ( s) amplitude of T  =3.464 (0.1 ) 2  1  3.465 phase angle of T  =
 + tan-1(0.1) =  + 0.02 Since only the maximum error is required , defined  = 0 for the comparison of  T and Tm . Then error = Tm − T  =3.464 sin (0.2t) – 3.465sin(0.2t + 0.02) = 3.464 sin(0.2t) –3.465[sin(0.02) 0.2t) cos 0.02 + cos(0.2t)sin 0.02] = 0.000 sin(0.2t) − 0.0693 cos(0.2t) Since the maximum absolute value of
cos(0.2t) is 1, maximum absolute error = 0.0693 14.5 (a) No, It is not possible to make the 1st class closed loop system unstable. (b) No, it cannot make the 2nd class supersampling system unstable for a closed loop. (c) Yes, the 3rd order system can become unstable. d) Yes, anything with a time delay can become unstable. 14.6
Engineer A is correct. The second-row oversampling process cannot become unstable with an analog controller. Foptd model can become unstable with a large Kc due to time delay. 14-3 14.7 Using MATLAB Bode Chart 5 Size (abs) 10 0 10 -5 10 -10 10 -45 Phase (deg) -9 0 -135 -180 -225 -270 -1 10 0 1 10 10 2 10 Frequency (rad/sec)
Figure S14.7. Bode diagram of the third order transport function. The value of the ‧ that returns a phase angle of -180° and the value of the AR in frequency is: ‧ = 0.807 rad/sec AR = 0.202 14.8 Using MATLAB, 14-4 Bode Diagram Size (abs) G(s) G(s) w ith Pade approx. 0 10 -1 10 0 Phase (deg) -50 -100 -150 -200 -250 -2 10 -1 0 10
10 Frequency (rad/sec) Figure S14.8. Bode diagram for G(s) and G(s) with Pate approach. As we can see from the data, the accuracy of Pate's approach does not change as the frequency increases in plot size, but will be compromised in the plot phase as the frequency goes higher. 14.9 ‧=2‧f where f is in cycles/minute For the
standard thermo pair, using Eq. 14-13b 1 = -tan-1(‧1) = tan-1(0.15)) Phase difference  = 1 – 2 Thus, the phase angle for the unknown unit is 2 = 1 −  and the time constant for the unknown unit is 1 ‧2 = tan( − 2 ) ‧ 14-5 1 10 using Eq. 14-13b . The results are listed below f 0.05 0.1 0.2 0.4 0.8 1 2 4 ‧ 0.31 0.63 1.26
2.51 6.03 6.28 12.57 25.13 1 -2 ,7 -5.4 -10.7 -26.6 -37 -43.3 -62 -75.1  4.5 8.7 16 24.5 26.5 25 16.7 9.2 2 -7,7 2 -14.1 -26.7 -45.1 -63.5 -68.3 -78.7 -84.3 -2 0.4023 0.4000 0.4004 0.3995 0.399 92 92 0.4001 0.3984 0.3988 That the unknown unit is first order is indicated by the fact that ,0 to , so that 2,1,-90° and 2-90° for
 implies a first-class system. This is confirmed by similar values of ‧2 calculated for different values , suggesting that a tanning chart (2) versus ‧ is linear as expected for a first-class system. Then using linear regression or taking the average of above values, 2 = 0.40 min. 14.10 From the solution to Exercise 5-19, for the two-tank
system H 1 ( s) / h1max 0.01 K   Q1i ( s) 1.32s  1 s  1 H 2 ( s) / h2 max 0.01 K   2 Q1i ( s) (1.32s  1) (s  1) 2 Q2 ( s) 0.1337 0.1337   2 Q1i ( s) (1.32s  1) (s  1) 2 and for the one-tank system  H ( s) / hmax 0.01 K   Q1i ( s) 2.64s  1 2s  1 Q ( s) 0.1337 0.1337   Q1i (
s) 2.64s  1 2s  1 For a sinusoidal input q1i (t )  A sin  t , the widths of the heights and flow rates are 14-6  ‧ KA / 4 ‧ 2 ‧ 2 ο 1a h  / hmax (1) Aa q  ‧ 0.1337 A / 4 ‧ 2 ‧ 2 ) 1 (2) for the single tank system, and Aes h1 / h1 <6>max ο KA / ‧ 2 ‧ 2 ο 1 (3) A h2 / h2 maximum ‧ KA / (‧ 2 ‧ 2 ο 2 ο 2
ο 2 ο 2 1) 2 (4) A q 2 ‧ 0.1337A / (‧ 2 ‧ 2 ) 1) 2 (5) for the two tank system. Comparing (1) and (3) for all ‧  ‧ Ah1 / h1max ‧ A h / hmax Therefore, for all ‧ , the first tank of the two tank system will overflow for a smaller value A than will the single tank system. Thus, from the overflow test, the single-tank system is
better for everyone. smaller range of output flow for the values ‧ satisfying  ‧ A q 2 ‧ A q q  or 0.1337A (‧ 2 ‧ 2 ) 1) 2 ‧ 0.1337A 4 ‧ 2 ‧ 2 ‧ 1 or ‧ 2 / ο = 1.07 Therefore, the two-tank system provides better depreciation of a sinusoidal disturbance for ‧ ‧ 1.07 if and only if 1.32 2 ‧ 2 ο 1 A 1 / h1max ‧ ‧ 1,
that is, A ‧ 0.01 14-7 14.11 Using Eqs. 14-28, 14-13, and 14-17, 2 ‧2 ο 1 2 AR= 100 ‧ 2 ο 1 4 ‧ 2 ο 1  = tan-1(■ - tan-1(10) – tan-1(2) The Bode plots shown below indicate that (i) (ii) (iii) (iv) (v) (vii) AR does not depend on the point of zero. AR has an echo for zeros near the source. All zeros lead to the final gradient of -1 for AR. A
left level zero yields an absolute  of -90°. A right level zero yields an absolute  of -270°. Left-level zeros near the source can give a phase lead to low -. Left-level zeros away from the source lead to a longer delay (i.e. a smaller phase angle) than the final value. u ‧ −90 º with a left level zero present. Bode Figure 1 Size (abs) 10
Case i(a) Case ii(b) Case iii 0 10 -1 10 -2 10 90 Phase (deg) 0 -90 -180 -270 -2 10 -1 0 10 10 Frequency (rad/sec) Figure S14.11. Bode plot for each of the four cases of dynamic numerator. 14-8 1 10 14.12 From Eq. 8-14 with I = 4D a) ( 4 D s  1  4 D s 2 ) (2 D s  1) 2 Gc ( s )  K c  Kc 4 D s 4 D s 2 2  4 2  2
 1  2 2 D   K 4 D   1 Gc ( j)  K c  c 4 D  4 D  From Eq. 8-15 with I = 4D and  = 0.1 b) Gc ( s)  K c (4 D s  1) D s  1 4 D s0.1 D s  1  16 2 2  1   2 2  1  D  D  Gc ( j)  K c  2 2 4 D  0.01 D   1 The differences are significant for 0.25 &lt;
D &lt; 1 by a maximum of 0.5 Kc at D = 0.5 , and for D &gt;10 by an amount increasing with D . 2 10 Series controller with filter (asymptote) 1 AR/K c 10 0 10 Parallel controller (asymptote) Parallel controller (real) Series controller (real) -1 10 -2 10 -1 10 0 10 1 10 2 10 ‧ D Figure S14.12. Nominal range ratio for parallel
controllers and series controllers 14-9 14.13 1 ο GOL ‧ 1 g g p Gc Gv ‧ 1 ο 2 0.6 4 Kc ο 1 50s ο 1 2s ‧ characteristic equation: (s) 1)(50s 1)(2s 1) ο K c (4)(2) (0.6) ‧ 0 (1) For a third order process, a Kc can always be selected to make the process unstable. A stability analysis would verify this, but it was not necessary. Substitute s = jo
in Eq. (1), we have: (j) ο 1)(50 j) (1) (2 j) ο 1) ο K c (4) (2)(0.6) ‧ 0 For t = 1, we have: (−100o3 + 53o)j + (1 + 4.8Kc − 152o) = 0 So we have oc = 0.53 and Kcu = 16.58. For t = 0.4, we have: (−40o3 + + (1 + 4.8Kc − 120.8o2 ) = 0 So we have: oc = 1.31 and Kcu = 41.28 (2) (3) The second measurement is preferred due to a larger stability
area of Kc. 14.14 (a) Always true. Increasing profit speeds up the response to a specified point change. Care must be taken not to increase profit too much or oscillations will arise. (b) False. If the open loop system is first row, increasing the Kc cannot lead to oscillation. c) Generally true. Increasing controller profit can cause real part of



the roots of the polynomal attribute to become positive. However, for first or second order processes, increasing Kc will not cause instability. d) Always true. The increase in the auditor's profit will reduce the shift. However, if profit increases too much, oscillations may occur. Even with oscillations the displacement will continue to decrease
until the system becomes unstable. 14-10 14.15 (a) Figure S14.15a Bode Plot of GOL. (Kc = 10) 1 Kc (4 s 1)(2 s 1) Cannot become unstable – maximum angle of phase 2nd series superagreed process (GOL) is -180 degrees. GOL ‧ GGc ‧ b) Figure S14.15b Provision plot of GOL. (Kc = 10) 14-11 GOL ‧ GGc ‧ (5s 1) K c 1 ο 1 / 5s
Kc ο (4s 1)(1)(1) 2s 1) 5s(4s ) 1)(2s ) 1) Can not become unstable - maximum phase angle (GOL) is -180 degree, while at low frequency the integrator has -90 degree phase angle. (c) Figure S14.15c A plot of GOL is proposed. (Kc = 10) GOL ‧ GGc ‧ s ο1 2s ο 1 (s 1) K c Kc ‧ (4s ο 1)(2s ο 1) s(4s ) 1) Can not become unstable - lead
unit has lag phase greater than -90, integrator contributes -90; the total phase angel is greater than -180. 14-12 (d) Figure S14.15d Provision plot of GOL. (Kc = 10) GOL ‧ GGc ( 1 − s) K c 1 − s Kc ‧ (4s ο 1)(2s ο 1) (4s ο 1)(2s ) 1) It can become unstable – maximum phase angle (GOL) is -270 degree. (e) Figure S14.15e A plot of GOL
is proposed. (Kc = 10) 14-13 GOL ‧ GGc ‧ e −s Kc (4s ) 1) It can become unstable due to time delay at high frequency. 14.16 Using matlab, bode diagram 2 10 size (abs) 1 10 0 10 -1 10 -2 10 0 parallel row w ith filter phase (deg) -45 -90 -13 1 5 -180 -225 -270 -2 10 -1 10 0 10 Frequency (rad/sec) Figure S14.16 Predict plot for exercise
13.8 Transfer mode multiplied by PID Controller Transfer Mode. Two cases: a)Parallel b) Series with Derivative Filter (=0.2). . Range ratios: Ideal PID controller: AR= 0.246 in ‧ = 0.80 series PID controller: AR=0.294 in ‧ = 0.74 There is a 19.5% difference in AR between the two controllers. 14-14 14.17 (a) Method examined in section
6.3: G 1(s) ‧ 12e −0.3s (8s 1) (2.2s) Method examined in section 7.2.1: Response step of Z(s) 12 10 X: 10.10.1. 09 Y: 7.2 Value 8 6 4 X: 4.034 Y: 2.4 Turning point 0 0 10 20 30 40 50 Time 60 70 80 90 100 Figure S14.17a G response step(s) Based on Figure S14.17, we can obtain time stamps in t 20% and 60% answer: t20 = 4.034; t60
= 10,09· 20/t = 0,4. Based on 60 t in figure 7.7, we have 60 = 2.0; g = 1.15, so we have t = 5.045.Using t the slope of the inflection point we can estimate the time delay to be 0.8. So we have: 12e −0.8 s G 2(s) ‧ 25.45s 2 ο 11.60 s 1 b) Based on figure S14.17a, we can receive i = 0.8; t = 15 − 0.8 = 14.2 12e −0.8 s G 3(s) ‧ 14.2 s ο 1
Comparison of three estimated models and the exact model in the frequency sector using bode plots: 14-15 Bode Diagram 50 Size (dB) 0 -50 G (s) -100 G1 (s) G2 (s ) -15 0 4 G3 (s) -200 x 10 0 Phase (deg) -1.152 -2.304 -3.456 -y 4.608 -3 10 -2 10 -1 0 10 10 10 2 10 Frequency bode designs (rad/s) for accurate and approximate models.
14.18 The initial transfer mode is 10(2s) −2 s G(s) ‧ (20s ) 1)(4s 1) (s) the transfer function obtained with the use of section 6.3 is: G οs ο ο 10 ο 2s ο 1 ο e--5 s ο 22s ο 1 ο 14-16 3 10 Chart Bode 1 Size (abs) 10 0 10 -1 10 G(s) G'-2 10 0 -360 Phase (deg) -720 -1080 -1440 -1800 -21 60 -2520 -2880 -2 -1 10 0 10 10 10 Frequency
(rad/sec) Figure S14.18 Bode plots for accurate and approximate models. As shown in Fig. S14.18, the approach is good at low frequencies, but not as good at higher frequencies. 14.19 a) G ‧ G p GV G m ‧ 2e −1.5 s 0.5e −0.3s 3e −0.2 s 3e −2 s ‧ (60s 1) (5s 1) 3s 1 2s 1 (60s ) 1)(60s) 5s ο 1) (2s 1) ο 1) oh case where f = -180: ‧ c
‧ 0.152 AR () ‧ 0.227 1 K cu ‧ ‧ 4.41 AR ()c) 14-17 Figure S14.19a Bode plot to find the plot. Simulation results with a different Kc are displayed in the Figure. S14.19b. Kc &gt; Kcu, the system becomes unstable as expected. Figure S14.19b Closed loop system step response with different Kc. (b) Use the rule of half of the Skogestad
‧ ‧ 60 ο 0.5 ‧ 5 ‧ 62.5 , ‧ 2.5 ο 2 ο 2 ‧ 9.5 The approximate model FOPTD: 14-18 G ‧ 3e −9.5 s 62.5s ο 1 Using Table 12.3, K c ‧ 0.586(9.5 / 62.5) 62.5 ‧I ‧ 62.19 − 0.165(9.5 / 62.5) Gc ‧ 1.10(1 ο −0.916 / 3 ‧ 1.10 ; 1 ) 62.19s , GOL ‧ GGc yc occurs when f = -180: ‧ ‧ c ‧ 0.153 AR (‧ c) ‧ 0.249 1 K cu ‧ ‧ 4.02 AR
(c) Figure S14.19c Pronometer of the FOPTD model. 14.20 Using the Bode plot, at a phase angle of -180°, we demand that K c RV K p K m ο 1 G p(s) ‧ e −☐s GV ‧ 0.5 Gm ‧ 1.0 14-19 Gp gain = 1.0 for all ‧. s ‧ (a) 2 ‧ ‧ c , so ‧ c ‧ 2 ‧ rad ‧ 0.628 10 minutes The critical gain is easily found by K c RV K p K K m ‧ 1 in ‧ ‧
‧ c K cu (0.5)(1) point 1 ‧ 1 , or K cu ‧ 2.0 b) The phase angle of Gc G ‧ Gcu = phase angle of e −!!! , or F = - -p (rad) (Eq). 14-33) when F = -180°= - p= θ Επειδή  γ  2 rad 10 τότε -   5 λεπτά . 10 λεπτά 2 14.21 α) Χρήση Eqs. 14-56 και 14-57     1 5 1  (1.0) AR OL   K c  1  2    2 2 25 
 100  1      1      1   = tan-1(-1/5) + 0 + (-2  tan-1(10)) + (- tan-1()) 14-20 Διάγραμμα bode 2 10 1 AR/Kc 10 0 10 -1 10 -2 10 -100 Φάση (deg) -150 -200 -250 -300 -350 -2 10 -1 0 10 10 10 1 10 Συχνότητα (rad/sec) β) Σχήμα S14.21a Οικόπεδο Bode Που  = 180° και λύστε για  να αποκτήσετε
c = 0,4695 Στη συνέχεια AR OL = 1 = Kcu(1,025)  c Ως εκ τούτου, Kcu = 1/1.025 = 0,976 Το σύστημα είναι σταθερό για Kc  0,976 c) Για Kc = 0,2 , set AROL = 1 and solve for  to obtain g = 0.1404 Then g =   = -133.6 g From Eq. 14-61, PM = 180 + g = 46.4 d) From Eq. 14-60 GM = 1.7 = 1 1 = AR OL
 Ac c 14-21 2 10 From part b), Therefore AR OL  c = 1.025 Kc 1.025 Kc = 1/1.7 or Kc = 0.574 Bode Diagram 2 10 1 AR/Kc 10 0 10 -1 10 -2 10 -150 Phase (deg) -180 -200 -250 -300 -350 -2 10 -1 0 10 10 1 10 2 10 Frequency (rad/sec) Figure S14.21b Solution for part b) using Bode plot Bode Diagram 2 10 1 AR/Kc 10 0 10 -1
10 -2 10 -150 Phase (deg) -180 -200 -250 -300 -350 -2 10 -1 0 10 10 1 10 2 10 Frequency (rad/sec) Figure S14.21c Solution for part c) using Bode plot 14.22 From modifying the solution to the two tanks in Section 6.4 , τα οποία έχουν ελαφρώς διαφορετικές διαμορφώσεις, 14-22 Gp (s) = R1 ( A1 R1 A2 R2 ) s  ( A1 R1  A2 R1  A2
R2 ) s  1 2 για R1=0,5, R2 = 2, A1 = 10, A2 = 0,8 Gp (ες) = 0,5 8s  7 s  1 Για R2 = 0,5, α) (1) 2 Gp (s) = 0,5 2s  5,8s  1 (2)  0,5 Gp| =   2 2 2  (1  8 γ )  (7 γ)     2 για R2=2   7 c  Gp= tan-1  2  1  8 c  , Kcu και c λαμβάνονται με Eqs. 14-7 and 14-8:   7 c  -180 = 0 + 0 +
tan-1   tan-1(0.5c) 2  1  8 c  Solving, c = 1.369 rad/min  0.5 1  ( K cu )(2.5)  2 2 2  (1  8 c )  (7 c )   1.5    2    (0.5c )  1  Substituting c = 1.369 rad/min, Kcu = 10.96, cKcu = 15.0 For R2=0.5   5.8 c  Gp = tan-1  2  1  2 c  For Gv = Kv = 2.5, For
Gm = 1.5 , 0.5s  1  0.5 | Gp| =  2 2 2  (1  2γ)  (5,8γ) , v=0,     | GV| = 2,5 m= -tan-1(0,5) , 14-23 | Gm| = 1,5 (0,5γ) 2  1   5,8 c  -180° = 0 + 0 + tan-1   tan-1(0,5c) 2  1  2 γ  Επίλυση, c = 2,51 rad/min Υποκατάσταση c = 2,51 rad/min, Kcu = 15,93, cKcu = 40,0 β) Από το
μέρος α), για το R2=2, c = 1.369 rad/min, 2 Pu = = 4,59 λεπτά c Kcu = 10,96 Χρησιμοποιώντας τον πίνακα 12.4, οι ρυθμίσεις Ziegler-Nichols PI είναι Kc = 0,45 Kcu = 4.932 , I= Pu/1.2 = 3.825 λεπτά Χρησιμοποιώντας Eqs. 13.63 και 13-62 , -tan-1(-1/3.825) 2  1  | Gc| = 4,932 ‧  ο1 ‧ 3,825  Then, from Eq. 14-56  −1
 -1  − 7 ‧ c  -180° = tan-1 ¦ − tan-1(0.5)c)  + 0 + tan ¦ 2  3 . 825 ‧ c    ‧1 − 8‧ c resolution , ‧c = 1,086 rad/min Use Eq. 14-57 Ac = AROL|‧==c =  ο = ‧ 4,932 ‧ ‧  1 ‧ ‧ 3,825 ‧c 2    0,5  ο 1 (2,5) ‧ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   ‧ (1 − 8)c) ο (7)c)  = 0.7362 14-24      
1.5 ‧  ‧ (0.5) ) 2 ο 1  c ‧ , profit margin GM =1/Ac = 1,358 Resolve Eq.(14-16) for ‧g AROL|‧=c = 1 in ‧g = 0.925 Replacement in Eq. 14-57 gives  |‧=g = −172.7° Therefore , PM phase margin = 180+ g = 7.3° 14.23 a) K=2 , ο = 1 , - = 0.2 , οc=0.3 Using Eq. 12-11, the PI settings are Kc ‧ 1 ‧ ‧1 K ‧ ο ο c ο I = ο = 1
min, , Using Eq. 14-58 ,  −1 -180, = tan-1  − 0.2-c − tan-1(-c) = -90■ − 0.2‧c ‧ ‧c  or ‧c = ο/ 2 = 7.85 rad/min 0.2 Using Eq. 14-57, Ac ‧ AR OL ‧ ‧ ‧c ‧ 1 ‧c 2   2 2  ‧ ‧ 0.255 ‧  ‧ 2 c ‧ ‧ 1 c ‧  From Eq. 14-60, GM = 1/Ac = 1/Ac = 3.93 b) Using Eq. 14-61, g = PM − 180■ = − 140 ‧ = tan-1(-1/0.5)g) −
0.2■g − tan-1(g) Solve , g = 3.04 rad/min 14-25 AR OL   g  1   0.5 g   1  Kc 2   1     2      g 2  1    Substituting for g gives Kc = 1.34. Then, from Eq. 14-8  −1 −180° = tanning-1 ‧ ‧ 0.5‧c   − 0.2‧c − tan-1(c)  Resolve, ‧c =7.19 rad/min From Eq. 14-56, Ac ‧ AR OL ‧ ‧
‧c  1 ‧ 1.34 ‧ ‧ ‧ 0.5 ‧ c 2   ο 1    2 ‧  ‧ 0.383 ‧  2 Using Simulink-MATLAB , these two control systems are compared for a unit step change at the specified point. 1.4 part (a) part (b) 1.2 1 0.8 Production (c) 0.6 0.4 0.2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time Figure S14.23 Closing loop response for unit step
change at the specified point. The controller designed in part (a) (Direct Composition) provides better performance by giving a first-class answer. Part (b) the controller produces a large excess. 14-26 14.24 a) Use Eqs. 14-56 and 14-57 AR OL ‧  ‧ Kc Ym ‧ Ysp   4 ‧ 2 ο 1  2 0.4 ‧  ο (1.0) ‧  ο  0.01. 2 ο  ‧  1
 ‧ 0.25 ‧ 2 ο 1  ‧ ‧ 25 ‧ 2 ο 1  = tan-1(2) − tan-1(0.1) − tan-1(0.5) – (-/2) − tan-1(5)) Diagram Oenus 2 10 0 AR/Kc 10 -2 10 -4 10 -90 Phase (deg) -135 -180 -225 -270 -2 10 -1 0 1 10 10 1 10 Frequency shape (rad/sec) Figure S14.24a Plot bode b) Use of eq.14-61 g = PM – 180° = 30°− 180° = −150° From the 
observatory versus ‧, g = -150° to ‧g = 1.72 rad/min 14-27 2 10 From plot of Since AR OL =1 , Kc = From the plot of Ac = AR OL  c = 0.144   g 1 = 6.94 0.144 From the plot of  vs. ,  = -180 at c = 4.05 rad/min AR OL vs , Kc AR OL Kc = 0.0326   c = 0.326 From Eq. 14-60, GM = 1/Ac = 3.07 Bode
Diagram 2 10 0 AR/Kc 10 -2 10 -4 10 -90 -135 Phase (deg) c)   g AR OL Kc AR OL vs , Kc -180 -225 -270 -2 10 -1 0 10 10 1 10 Frequency (rad/sec) Figure S14.24b Solution for part b) using Bode plot 14-28 2 10 Bode Diagram 2 10 0 AR/Kc 10 -2 10 -4 10 -90 Phase (deg) -135 -180 -225 -270 -2 10 -1 0 10 1 10 10 Frequency
(rad/sec) Figure S14.24c Solution for part c) using Bode plot 14.25 a) Schematic diagram : TC Hot Liquid TT Cold Liquid Mixing Point 14-29 Sensor 2 10 Block Diagram: TR + Valve Controller Mixing Process Gc Gv Gp - Transfer Line GTL Gm b) GvGGGm = Km = 6 ma/ma GTL = e-8s GOL = GvGGGMGL = 6e-8s If GOL = 6e-8s | GOL(i)
| = 6  GOL (j) = -8‧ [rad] Find ‧c: The critical frequency corresponds to an open loop phase angle of the phase angle − 180° = − ‧ radians -8‧c = -■ or 2 ‧ ‧ 16s ‧c ‧ / 8 1 1 ‧ ‧ 0.167 Find Kcu: Kcu = | G p (i)c ) | 6 Find Pu: Pu = 2 οc = ο/8 rad/s ‧ [ Note that for this unusual procedure, ar process is independent of frequency]
Ziegler-Nichols decomposition ratio settings 1/4: PI controller: Kc = 0.45 Kcu = (0.45)(0.167) = 0.45 Kcu = (0.45)(0 ,167) = 0.0.45 Kcu = (0.45)(0.167) = 0.0.45 Kcu = (0.45)(0.167) = 0.0.45 075 = Pu/1.2 = 16 s/1.2 = 13.33 s PID controller: Kc = 0.6 Kcu = (0.06)(0.167) = 0.100 ‧I = Pu/2 = 16/2 = 8 s 14-30 T ‧D = Pu/8 = 16/8 = 2 s c) 1.4
1.2 y 0.8 PID control PI control 0.6 0.4 0.2 0 0 30 60 90 120 150 t Figure S14.25 Adjustment points for PI and PID control. Note: The MATLAB version of PID control uses the following controller settings: ki=Kc/-I and kd=Kc-D. d) Derivative control action improves closed loop response by reducing settlement time, at the expense of a more
oscillating response. 14.26 Kcu and ‧c are taken using Eqs. 14-56 and 14-57. Including the GF filter in these equations gives -180° = 0 + [-0,2‧c − tan-1(‧c)]+[-tan-1(-F-c)] Resolve, 14-31 ‧c = 8,443 ‧c = 5,985 ‧F = 0 ‧F = 0,1 for then, by Eq. 14-57,    2 1   1 ‧ K cu ‧  ‧  2 2 ‧ ‧ c ο 1  ‧ ‧ F ‧ c ο 1 
Resolve for Kcu gives, Kcu = 4,251 Kcu = 3,536 for ‧F = 0 ‧F = 0,1 for ‧F = 0 ‧F = 0,1 Therefore, ‧cKcu = 35,9 ‧c Kcu= 21,2 Since ‧cKcu is lower for ‧F = 0,1, filtering the measurement leads to worse control performance. 14.27 a) GV(s) ‧ 0.047 5.264 ‧ 112 ‧ 0.083s ο 1 0.083s ο 1 G p (s) ‧ 2 (0 ,432s ο 1)(0.017s 1) Gm(s)
‧ 0.12 (0.0.017s) ο 1) Gm(s) ‧ 0.12 (0 0.0.0.) 024s 1) Use Eq. 14-61 -180°= 0 − tan-1(0.083-c) − tan-1(0.432 • &lt;8&gt;c) − tan-1(0.017-c) − tan-1(0.024-c) Resolve , ‧c = 18.19 rad/min Use Eq. 14-60 14-32     5.624 2 ,  1  (0,083 ) 2  1   (0,432 ) 2  1 (0,017 ) 2  1  γ γ       0,12       
c= 18,19 , Kcu = 12,97 Pu = 2/ c = 0,345 λεπτά χρησιμοποιώντας τον πίνακα 12.4, οι ρυθμίσεις Ziegler-Nichols PI είναι Kc = 0,45 Kcu = 5,84 , I=Pu/1,2 = 0,288 λεπτά β) Χρησιμοποιώντας Eqs.14-39 και 14-14-240 c =  Gc = tan-1(-1/0.288)= -(/2) + tan-1(0,288) 2 | Gc| = 5.84  1    1  0.288  Then, from
Eq. 14-57, - =  (/2) + tan-1(0.288c)  tan-1(0.083c)  tan-1(0.432c)  tan-1(0.017c)  tan-1(0.024c) Solving, c = 15.11 rad/min. Using Eq. 14-56   5.84   2     5.264   1    Ac  AR OL c   (0.083 ) 2  1   c        2 0.12     (0.432c ) 2  1
(0.017c ) 2  1   (0.024c ) 2  1   1   0.288c = 0.651 14-33 Using Eq. 14-60, GM = 1/Ac = 1.54 Solving Eq. 14-56 for g gives AR OL   g =1 at g = 11.78 rad/min Substituting into Eq. 14-57 gives g =   =  (/2) + tan-1(0.288g)  tan-1(0.083g)  tan-1(0.432g) g  tan-1(0.017g) 
tan-1(0.024g) = -166.8 Using Eq. 14-61 PM = 180° + g = 13.2 ° 14.28 a) From exercise 14.28, GV(s) ‧ 5.264 0.083s 1 2 (0.432s ) (1) (1) 0.017s 1) 0.12 Gm(s) ‧ (0.024s 1) G p(s) ‧ 1   Gc(s) ‧ 5-1 ο  ‧ 0.3s  Therefore, the closed loop transfer function is the PI controller is GOL ‧ Gc Gv G G GOL ‧ 6.317s ο 21.06 1.46
‧ 10 s ο 0.00168s 4 ο 0.05738s 3 ο 0.556s 2 ο s −5 5 14-34 Using MATLAB, use MATLAB, the Nyquist diagram for this open loop system is Nyquist Diagram 1 0.5 0 Fantastic Axis -0.5 -1 -1.5 -2 -2.5 -3 -3.25 -4 -3 -2.5 -2 -1.5 -1 -0.5 0 Actual Axis Figure S14.28a The Nyquist diagram for the open loop system. b) Profit margin = GM = 1
AR c where ARc is the value of the open loop range ratio at critical frequency ‧c. Using the Nyquist Plot Nyquist Chart 1 0.5 0 Fantastic Axis -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -3 -3 -2 -2 2.5 -2 -1.5 -1 -0.5 Actual axis Figure S14.28b Graphic solution for part b) 14-35 0 - = -180 ☐ ARc = | G(i)c)| = 0.5 Therefore, the profit margin is GM = 1/0.5 =
2 14-36 Chapter 15 © 15.1 for ra=d/u �Ra d ‧] 2 �u u Kp ‧ which may differ more from Kp in Eq. 15-2, because the new Kp depends on both d and you. 15.2 By default, the ratio station sets um = um0 + KR (dm - dm0) So KR ‧ u m − u m0 K 2u 2 K 2 ‧ d m − d m0 K1d 2 K1 u ο  ‧d  2 (1) For a fixed profit KR, your values and
d in Eq. 1 are the desired constant state values, so u/d = Rd, the desired ratio. In addition, the winnings of the transmitter are K1 ‧ (15 − 3) mA Sd 2 K2 , (15 − 3) mA Su 2 Replacing K1, K2 u/d σε (1) δίνει, KR  [Τύπος εδώ] Su 2 Sd 2 Rd 2  S    Rd d  Su   2 15-1 [Τύπος εδώ] 15.3 (α) Διάγραμμα μπλοκ του συστήματος
ελέγχου τροφοδοσίας (β) Σχεδίαση feedforward βασισμένο σε ανάλυση σταθερής κατάστασης Το σημείο εκκίνησης στο σχεδιασμό του ελεγκτή τροφοδοσίας είναι το Eq. 15-21. Για ένα σχέδιο που βασίζεται σε ανάλυση σταθερής κατάστασης, οι λειτουργίες μεταφοράς σε (15-21) αντικαθίστανται από τα αντίστοιχα κέρδη σταθερής
κατάστασης: GF ( ες )   Kd Kt Kv K p (1) Από τις δεδομένες πληροφορίες, mA L/min gal/min Kv  4 mA K t  0,08 15-2 Επόμενο, υπολογισμός Kp και Kd από τα δεδομένα. Γραμμική παλινδρόμηση δίνει: ppm gal/min ppm K d  0,235 L/min K p  2.1 Αντικαταστήστε αυτά τα κέρδη σε (1) για να πάρετε: ppm L/min GF (s)   mA
  gal/min   ppm    0,08    0,08     4   2,1 L/min   mA   gal/min   0,235 GF (ες)  0,35 15,4 (TBA) 15,5 α) Χρησιμοποιώντας κέρδη σταθερής κατάστασης Gp=1, Gd=2, Gv = Gm = Gt =1 Από Eq.15-21 Gf = b) Gd 2   2 Gv Gt G p (1)(1)(1) Χρησιμοποιώντας Eq. 15-21 2 Gd 2 (s 
1)(4s  1)   Gf = Gv Gt G p  1  4s  1 (1)(1)     s 1  15-3 γ) Χρησιμοποιώντας Eq. 12-19 όπου 1 ~ ~ ~ G  Gv G p G m   G G s 1 1 G  1 , G  s 1 Για c=3, και r=1, Eq. 12-21 δίνει, f= 1 3s  1 Από Eq. 12-20, Gc*  G 1 f  (s  1) ( 1 s 1 )  3s  1 3s  1 Από Eq. 12-16, s 1 Gc s 1 Gc
  3s  1   1  Gc G 1  1 3s 3s  1 δ) Για έλεγχο μόνο feedforward, Gc = 0 για αλλαγή στη διαταραχή μονάδας, D(s) = 1/s Η αντικατάσταση σε Eq. 15-20 δίνει Y(s) = (Gd+GtGfGGGGP) 1 s Για τον ελεγκτή του μέρους (α)   2  1  1 Υ =  (1)(--2)(1)     1   (s  1) (4s  1) Y(s) =  1) (4s)  1) Y(s) = 
  1) 8 / 3 32 / 3 8 / 3 8 8/3  (s  1)(4s  1)    1  4s  1  s  1  s  1/ 4   Λαμβάνοντας αντίστροφα μετασχηματισμένα, 8 y (t)  (et  et /4 ) 3 15-4 Για τον ελεγκτή του μέρους β)  2  2   1   1 Υ(-ες) =   (1)   (1)    0  4s  1   s  1   s  (s  1)(4s  1) ή y(t) = 0 Οι
απαντήσεις βήμα εμφανίζονται στο Σχήμα. S15.5 (αριστερός πίνακας). e) Using Eq. 15-20 For the controller of parts (a) and (c),  2  1   ( s  1)(4 s  1)  (1)(2)(1)  s  1   1   Y(s) =   s 1  1   s 1   (1)   (1)    3s   s  1  or 24s 36 32 4    ( s  1)(4s  1)(3s  1) 3s 
1 4s  1 s  1 Y(s) = 12 8 4    s  1/ 3 s  1/ 4 s  1 Thus, y(t )  12et /3  8et /4  4et and for controllers of parts (b) and (c)  2  2   1    ( s  1)(4 s  1)  (1)  4 s  1  (1)  s  1   1     = 0 Υ (ες) =   s 1  1 ‧ s 1 ο  (1) ◊  (1) ‧  ‧ 3s  ‧ s ο 1  So, y(t) = 0
Closed loop responses appear in the Figure. S15.5 (right side). 15-5 Figure S15.5. Closed loop responses for feed-only control (FFC, left panel) and forward feedback control (FFC+FBC, right panel). 15.6 (a) The constant energy balance for both tanks shall be in the form of 0 = w1 C T1 + w2 C T2 − w C T4 + Q where: Q is the power
input of the heater. C is the special heat of the liquid. Resolve for Q and replace non-measured temperatures and flow rates based on their nominal values; Q = C ( w1T1 w 2 T 2 − wT 4 ) (1) Neglect of the dynamics of the heater and transmitter, Q = Kh p (2) 15-6 T1m = T1m0 + KT(T1-T10) (3) wm = wm0 + Kw(w-w0) (4) Replacement in
(1) for Q, T1 and w from (2), (3) and (4), gives P■ b) C 1 1 0 0 0 [ w1 (T1 ( T1m − T1m )) ο w2 T2 − T4 ( w 0 ( wm − wm ))] Kh KT K w Dynamic compensation is desirable because the process transfer function Gp=T4(s)/P(s) is different from each of the disturbance transfer modes Gd1=T4(s)/T1(s) and Gd2=T4(s)/w(s) specifically for Gd1
which has a higher order. 15.7 (a) Q1 Gf Kt Gd Gv (b) Q5 Gp + + H2 A balance of fixed-state materials for both tanks gives, 0 = q1 + q2 + q4 − q5 Because q 2 = q 4 = 0, the above equation in deviation variables is: 0 = q1 – q 5 (1) From the block diagram (which uses deviation variables), 15-7 Q5 (s) = Gv Gf Kt Q1 (-(s)
Replacing Q5(s) in (1) gives 0 = Q1(s) − Gv Gf(s) Kt Q1(s) or so Gf = c) 1 Rv Kt To find Gd and Gp, the mass balance in tank 1 is A1 dh1 ‧ q1 q 2 − C1 h1 dt where A1 is the transverse area of tank 1. Linearization and adjustment q 2 = 0 leads to A1 dh1 ' C1 ‧ q1 ' − h1 ' dt 2 h1 Take transformation Laplace, H 1 (s) R1 ‧ Q1 (s) A1
R1 s 1 Line q3 = C1 h1 where R1 � 2 h1 C1 (2) gives  1  q3 ‧ h1 R1 So Q3 (s) 1 ‧ H 1 (s) R1 (3) The mass balance in tank 2 is A2 dh2 ‧ q3 q4 − q5 dt Using deviation variables, setting q 4 = 0, and taking the transformations Laplace gives: A2 sH2 (s) = Q3(s) Q5(s) 15-8 H 2 (s) 1 ‧ Q3 (s) A2 s (4) and H 2 (s) 1 ‧] ‧ G p (s)
Q5 (s) A2 s Substitution by 2) , (3) and (4) yields, Gd(s) ‧ H 2 (s) H 2 (s) Q3 (s) H 1 (s) 1 ‧ Q1 (s) Q3 (s) H 1 (s) Q1 (s) A2 s (A1 R 1 s) Using Eq. 15-21 1 − Gd A2 s(A1 R1 s 1) Gf ‧ Gt G v G p K t K v (--1 / A2 s ) − Gf ‧ 1 1 K v Kt A1 R1s 1 15.8 a) Feedforward controller design A dynamic model will be developed based on the
following assumptions: 1. Perfect mixing 2. Isothermal function 3. Fixed volume Component balances: dcA ‧ q(c Ai − c A) − V (k1c A − k2cB) dt dc V B − qcB V (k1c A − k2cB ) dt V Linear, dcA ο a11cA ο a12cB ο b1q ο dcAi dt dc V B a21cA a22cB - b2 q dt V 15-9 (1) (2) (2) a11 − q − k1 , V a12 ‧ k2 a21 ‧ k1 , d ‧ q ,
V q − k2 V c b2 ¦ − B V a22 ¦ − b1 ‧ c Ai − c A, V (3) cA ‧ c A − c A and c A indicates the nominal constant state value Take Laplace transforms and resolves after replacing the first equation for CA (s) in the second equation. The result is:  (s) CB (s) ‧ G p(s) Q (s) Gd(s) C Ai (4) where: G p(s) ‧ a21b1 μ b2 (s − a11)  (s)
Gd (s) a21d1 (s) (5) (s) ‧ (s ) a22 )(s ) a11 ) − a21a12 cA ‧ c A − c A and c A indicates the nominal constant state value Feedforward controller design equation (based on Eq. 5-21): G f(s) ¦ Gd(s) Kt K vG p(s) (6) Substitute for Gd(s) and gp(s) :   1   a2 1d G f(s)    a21b1 b2 (s − a11 )  K t K v  Rearrangement
and substitute from (3) : G f (s) ‧ K ‧ s ο1 15-10 (7) where:  1   k1qV K ‧  ‧  ‧ K t K v   k 1V (c A − c Ai ) q qB ο cB k1V  ) (b) cBV k1V (c A − c Ai) ο q cB μb k1V Reverse or direct action controller; From ch. 11, we know that for the closed loop system to be stable, KcKvKpKm &gt; 0 The available information
indicates that Vv &gt; 0 and Km &gt; 0, assuming that q is still the manipulated variable. So Kc should have the same mark as Kp and we need to specify the mark of Kp. From (5) Kp can be calculated as: K p ‧ lim G p(s) s ο0 a21b1 − b2 a11 a11a22 − a21a12 Substitute from (3) and simplify to get:  1   k1qV (c Ai − c A) cBV 2 (q
vk2)  Kp ‧  ,  q 2 v (k1 k2 )  Kt K v   (8) Because both the numerator and the denominator terms (8) are positive, Kp &gt; 0, 2014, in New So Kc should be positive. Conclusion: The feedback controller should act in reverse action. c) The advantages of using a fixed-state controller are that the calculations are quite simple and a
detailed process model is not required. The downside is that the control system may not perform well during transitional conditions. To decide whether or not to add dynamic compensation, we need to know whether the controlled cb variable is affected faster, or more slowly, by the cAi disturbance variable than it is by the manipulated
variable, q. If the response times are quite different, then the dynamic compensation of 15-11 could be beneficial. A unstable state model (or experimental data) will be required to resolve this issue. Even then, if strict cB control is not necessary, it could be decided to use the simplest design method based on the steady state analysis. 15.9
The block diagram for the feed feedback control system is shown in Figure 15.12. a) No (b) Power controllers are required from example 15.5, GRIP ‧ K IP ‧ 0.75 psi/mA, Gv(s) ‧ Vv 250 ‧ ‧ vs ο1 0.0833s ο1 that the measurement time delay is now min, it follows that: Gt ( s)  Gm ( s)  Kt e s  32e 0.1s The process and
disturbance transfer functions are: X ( s)  W2(s) 2.6 x104 , 4.71 s  1 X ( s) 0.65  X 1(s) 4.71 s  1 The ideal dynamic feedforward controller is given by Eq. 15-21: Gf   Gd K I PGt GvG p (15-21) Substituting the individual transfer functions into Eq. 15-21 gives, G f (s)   0.417  0.0833s  1 e 0.1s (1) The static
(or steady-state) version of the controller is simply a gain, Kf: Kf = - 0.417 (2) 15-12 Note that Gf(s) in (1) is physically unrealizable. In order to produce a naturally liquid dynamic controller, the non-performing controller in point 1 shall be approached by a lead delay unit, in proportion to example 15.5: G f (s) ‧ − 0.417 0.1833s ο 1
0.01833s 1 (3) Equation 3 resulted from (1) from: (i) omitting the delay in time; (ii) the addition of the 0,1-minute delay to the delivery time constant and (iii) the introduction of a short time constant ‧-x-0.1833= 0.01833 for ◊ = 0.1. (c) Feedback controller Define G as, 4 25   2.6 x10   0.1s    32e   0.0833s  1   4.71
s  1   0.75  G  GIP GvG p Gm  First, approximate G as a FOPTD model, G using Skogestad's half-rule method in Section 6.3: � � �= 4.71 + 0.5(0.0833) = 4.75 min � �  = 0.1 + 0.5(0.0833) = 0.14 min Thus, G 0.208 e 0.14 s 4.75s  1 The ITAE controller settings are calculated as:   K K c  0.859   
     0.874   I   (d)  0.977  0.680  0.14   0.859    4.752   0.14   0.674    4.752   0.977  K c  134  0.680   I  0.642 min Combined feedforward-feedback control This control system consists of the dynamic feedforward controller of point (b) and pi controller of point (c). Closed
loop responses to a +0.2 step change to x1 for the two forward feed controllers are displayed in the Shape. S15.9a. The dynamic forward power controller is superior to the static power controller 15-13, because both the maximum deviation from the specified point and the precipitation time are smaller. Figure S15.9b shows that the
combined feed feedback control system provides the best control and is superior to the PI controller. A comparison of the Figs. S15.9a and S15.9b shows that the addition of feedback control significantly reduces settlement time due to the very high value of Kc that can be used because the time delay is too short. (Note that  = 0.14/4.75
= 0.0029.) Image. S15.9a. Comparison of static and dynamic power controllers for step disturbance +0.2 to x1 in t =2 minutes x 8 x 10 -3 7 6 5 FB FF-FB 4 x 3 2 1 0 -1 -2 0 1 2 3 4 5 6 7 t (min) Fig. S15.9b. Comparison of feedback and feed feedback controllers for step disturbance +0.2 x1 at t =2 min. 15-14 15.10 a) For steady-state
conditions, Gp=Kp, Gd=KL, Gv = Gm = Gt =1 Using Eq. 15-21 Gf =  Gd  0.5   0.25 Gv Gt G p (1)(1)(2) b) From Eq. 15-21, c)  0.5e 30s  Gd (95s  1) 10s 60s  1 Gf =   0.25 e  20 s Gv Gt G p (60s  1)  2e   (1)(1)  95s  1  Using Table 12.1, a PI controller is obtained from item G, Kc  1  1 95
  0.95 K p  c   2 (30  20) i    95 d) As shown in Fig.S15.10a , ο δυναμικός ελεγκτής παρέχει σημαντική βελτίωση. 15-15 0,08 Ελεγκτής του μέρους α) Ελεγκτής του μέρους Β 0,06 0,04 y(t) 0,02 0 -0,02 -0.04 0 50 100 150 200 250 300 350 400 450 500 χρονών Σχήμα S15.10a. Απόκριση κλειστού βρόχου
χρησιμοποιώντας μόνο το στοιχείο ελέγχου τροφοδοσίας προς τα εμπρός. ε) 0,06 Ελεγκτής του μέρους α) και γ) Ελεγκτής του μέρους β) και γ) 0,04 0,02 y(t) 0 -0,02 -0,04 -0,06 2 0 50 100 150 200 250 300 350 400 450 500 χρόνος Σχήμα S15.10b. Απόκριση κλειστού βρόχου για τον έλεγχο ανάδρασης feedforward. στ) Όπως φαίνεται στο
Σχήμα. S15.10b, η διαμόρφωση feedforward-ανάδρασης με το δυναμικό ελεγκτή παρέχει τον καλύτερο έλεγχο. 15-16 15.11 Ενεργειακό ισοζύγιο: VC dT  wC (Ti  T )  U (1  qc ) A(T  Tc )  U L AL (T  Ta) dt (1) Επέκταση του RHS, VC dT  wC (Ti  T )  UA(T  Tc ) dt  UAqcT  UAqcTc  U L AL (T  Ta ) (2)
Γραμμοποίηση του μη γραμμικού όρου, qc T � qcT  qc T   T qc (3) Αντικατάσταση (3) σε (2), αφαιρώντας την εξίσωση σταθερής κατάστασης, και εισάγοντας μεταβλητές απόκλισης, VC dT   wC (Ti  T )  UAT   UAT qc  UAqcT  dt  UATc qc  U L ALT  (4) Λαμβάνοντας το μετασχηματισμό Laplace
και υποθέτοντας σταθερή κατάσταση σε t = 0 δίνει , VCsT (s)  wCTi(s)  UA(Tc  T )qc (s)  (wC  UA  UAqc  U L AL )T (s) (5) Rearranging, T ( s)  G L ( s)Ti( s)  G p ( s)qc ( s) where: Gd ( s)  G p ( s)  Kd  s 1 Kp s  1 15-17 (6) Kd  wC K (7) UA(Tc  T ) K VC  K K  wC  UA  UAqc
 U L AL Kp  The ideal FF controller design equation is given by, GF  Gd Gt Gv G p (15-21) But, Gt  K t e  s and Gv=Kv (8) Substituting (7) and (8) gives, GF   wCe  s K t K vUA(Tc  T ) (9) In order to have a physically realizable controller , αγνοήστε τον όρο e+-s, GF   wC K t K vUA(Tc  T) (10) 15.12
Σημείωση: Η λειτουργία μεταφοράς διαταραχής είναι εσφαλμένη στην πρώτη εκτύπωση. Θα πρέπει να είναι: cO2  2.82e4 s  FG 4.3s  1 α) Η εξίσωση σχεδιασμού του ελεγκτή τροφοδοσίας είναι (15-21): 2.82e--4 s Gd 4.2s  1 4.3s  1 Gf    20.1 1 1 4 s Gv Gt G p 4.3s  1  0.14e  (1)(1)    4.2s  1 
G f � 20,1 m3 /min 15-18 β) Χρησιμοποιώντας το στοιχείο Ζ στον πίνακα 12.1, λαμβάνεται ελεγκτής PI για το G= GvGGGm, Ας υποθέσουμε ότι c =/2 = 2,1 λεπτά. Kc  1 τπ/ 2 1 4,2  2   10,8 K τ. i / 2 0.14 (2.1 ο 2) t I = t+i/2 = 4.2+2 = 6.2 minutes (4.2)(4) ‧ 1.3 5 minutes 2t 2(4.2) ο 4 ‧i ‧ ‧ 95 ‧ c) As shown in Fig.
S15.12a, the FF-FB controller provides the best control with a small maximum deviation and without compensation. The oscillation due to the feedback controller can be depreciated using a larger value of the design parameter, c. 15-19 Figure S15.12a: Controller Comparison for step change in fuel gas purity from 1.0 to 0.9 to t = 0. Top:
full scale; Bottom: enlarged scale. 15.13 Fixed-state balances: 0 ‧ q5 q1 − q3 (1) 0 ‧ q3 q2 − q 4 (2) 0 0 ‧ x5 q5 x1q1 − x3 q3 (3) 0 ‧ x3 q3 q2 − x4 q4 (3) 4) Resolve (4) for x3 q3 and substitute in (3), 0 ‧ x5 q5 x2 q2 − x4 q4 (5) x 4 q 4 − x5 q 5 x2 (6) Rearrangement, q2 ‧ 15-20 To draw control of the feedforward law, Leave x4 x4
sp x2 x2 x2 (t) x5 x5 (t) and q2 q2 (t) So q 2 (t) ‧ x4 sp q 4 − x5 (t) q5 (t) x2 (7) Replace numeric values : q 2 (t) ‧ (3400) x4 sp − x5 (t)q5 (t) 0.990 (8) or q2 (t) ‧ 3434x4 sp − 1.01x5 (t) q5 (t) (9) Note: If winnings of the transmitter and control valve are available, then an expression relating to the output signal of the power controller, p(t),
with the measurements, x5m(t) and q5m(t) can be developed. Dynamic compensation: It will be required due to the additional dynamic delay introduced by the tank on the left side. Current disturbance 5 affects x3, while q3 does not. 15.14 The three xD control strategies are compared to Figs. S15.14a-b for the disturbance of the pacing in
the composition of the feed. The FF-FB controller is slightly superior because it minimizes the maximum deviation from the specified point. Note that the design of the PCM power controller ignores the two time delays, which are quite different. Thus, the feedforward controller over-fixes and is not as effective as it could be. 15-21 Fig.
S15.14a. Comparison of feedback control and no control for step change in feed composition from 0.5 to 0.55 to t = 0. Image. S15.14b. Comparison of forward feed control and feedback control for step change in feed composition from 0.5 to 0.55 to t = 0. 15-22 Chapter 16 16.1 The difference between systems A and B lies in the dynamic
lag of measurement elements Gm1 (primary loop) and Gm2 (secondary loop). With a faster measuring device in A, better control action is achieved. Additionally, for an overlay control system to function properly, the secondary control loop response must be faster than the primary loop. Therefore, system A should be faster and yield
better closed loop performance than B. Because the Gm2 in system B has a noticeable delay, cataract control has the potential to improve the overall closed loop more than for system A. Little improvement in system A can be achieved by controlling cataracts versus conventional feedback. Comparisons are shown in the S16.1a/b. PI
controllers are used in the outer loop. Pi controllers for both system A and system B are designed on the basis of Table 12.1 (c ) . P controllers are used in internal loops. Due to the different dynamics, the proportional gain of system controller B is about a quarter as large as the system controller gain A: Kc2 = 1 System B: Kc2 = 0.25 ‧
I=15 ‧I=15 Kc1=0.5 Kc1=2.5 0.7 Ca standard feedback 0.6 0.5 Output 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 time Figure S16.1a System A. Comparison of D2 responses (D2=1/s) for PI control and conventional control. Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg,
Thomas F. Edgar, Duncan A. Mellichamp, and Francis J. Doyle III 16-1 Compared to the two numbers, it appears that the typical feedback results are essentially the same, but the sequential response to System A is much faster and has a much less absolute error than what to control waterfall of B 0.7 Cascade Standard feedback 0.6 0.5
Output 0.4 0.3 0.2 0.1 0 10 20 30 40 50 time 60 70 80 90 100 Figure S16.1b System B . Comparison of D2 responses (D2=1/s) for sequential control and conventional PI control. Figure S16.1c Block diagram for System A 16-2 Figure S16.1d Block diagram for System B 16.2 a) The transfer function between Y1 and D1 is Y1  D1 Gd 1
  Gc 2Gv 1  Gc1   G p Gm1  1  Gc 2GvGm 2  and that between Y1 and D2 is G p Gd 2 Y1  D2 1  Gc 2Gv Gm 2  Gc 2GvGm1Gc1G p using Gv  5 s 1 , Gd 2  1 , 16-3 Gd 1  1 , 3s  1 4 , Gm1  0.05 , (2s  1)(4s  1) For Gc1 = Kc1 and Gc2 = Kc2, we obtain G m 2  0 .2 Gp  8s3  (14  8Kc 2 ) s 2  (7
 6 Kc 2 ) s  Kc 2  1 Y1  D1 24s 4  (50  24 Kc 2 ) s3  [10  Kc 2 (9  3Kc1 )]s  (35 26 Kc 2 ) s 2 ο Kc 2 (1 ο Kc1 ) 1 Y1 4(s 1) ‧ 3 2 D2 8s (14 ο 8K c 2) s The following figures show the following step load responses for Kc1=43.3 and Kc2=25. Note that both responses are constant. Keep in mind that the critical gain for
Kc2=5 is Kc1=43.3. The increase in Kc2 stabilizes the controller as planned. -3 1 12 x 10 0.8 10 0.6 8 0.4 6 Output output 0.2 0 4 -0.2 2 -0.4 0 -0.8 0 5 10 15 time 20 25 30 -2 0 0 5 10 10 15 time 20 25 30 Figure S16.2a Responses for unit load change to D1 (left) and D2 (right) b) The typical equation for this system is
1+Gc2GGGm2+Gc2GGm1Gc1Gp = 0 (1) Let Gc1=Kc2 and Gc2=Kc2. substituting all transport functions in (1), we have 8s3 ο (14 ο 8Kc 2 ) s 2 (7 ο 6 Kc 2 ) s ο K c 2 (1 k c1) ο 1 ‧ 0 (2) Now we can use the direct substitution:  −8 ‧ 3 ο 7 ο 6 K c 2 ‧ ‧  j − (14 ο 8K c 2 ) ‧ 2 ο K c 2 (1 k c1) ο 1 ‧ 0 (3) j : 8   7  6 K c 2
   200 1 1 Therefore, for normal (positive) values Kc1 and Kc2, 16-4 24 Kc 2 2 66 Kc 2 ο 66 Kc 2 ο 45 4Kc 2 The results are shown in the table and picture below. Note the almost linear variant of Kc1 ultimate with Kc2. This is because the right side is very nearly 6 Kc2 +16.5. For larger Kc2 values, the stability margin in Kc1 is
higher. There do not appear to be non-linear effects of Kc2 for Kc1, especially at high Kc2. Kc1,u ‧ There is no theoretical ceiling for Kc2, except that large values can cause the valve to kort for small set-point or load changes. Kc1.u 33.75 34.13 38.25 43.31 48.75 54.38 60.11 65.91 71.75 77.63 83.52 89.44 9 5.37 101.30 107.25 113.20
119.16 125.13 131.09 137.06 160.00 140.00 120.00 Kc1, final Kc2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 100.00 80.0 0 160.00 40.00 20.00 0.00 0 5 10 15 Kc2 Figure S16.2b Kc2 effect on critical profit Kc1 c) With built-in action in the inner loop , Gc1 ‧ K c1 1  Gc 2 ‧ 5‧1 ο  ‧ 5s  Replace all transfer functions in
the characteristic equation yields 1  5   1 ο 5-1 ο  (0.2) ο 5-1 ο  (0.0.1   (0.2 ο 5-1 ο  (0.0.1 05) K c1 ‧ 5s  s ο 1 ‧ 5s  s ο 1 4 ‧0 (4 s ο 1) (2 s ο 1) Rearrangement gives 16-5 20 8s 4 54s 3 ο 45s 2 ο ( 12 ο 5K c1 ) s ο K c1 ο 1 ‧ 0 Now we can use direct substitution:  −54 ‧ 3 ο12 ο 5K c1 ‧  j ο 8 • 4 − 45 ‧
45 ‧ 4 2 k c1 ‧ 1 ‧ 0 j : −54 ‧ 3 ‧ 12 ο 5 K c1 ‧ ‧ 0 8 ‧ 4 − 45 ‧ 2 k c1 ‧ 1 ‧ 0 Solve the above equations , and we will get: K c1,u ‧ 44.2 The final K c1 is 44.2, which is close to the result, as for analog only control of the secondary loop. With built-in action only in the outer loop, 1  Gc1 ‧ K c1 ‧1 ο  ‧ 5s  Gc 2 ‧ 5
Replacing the transfer functions in the characteristic equation. 1 ο 5 5 1 4  (0.2) ο 5 (0.05) K c1 ‧1 ο  0 s ο  ο 1 s ο1 ‧ 5s  (4s 1)(2s 1)  8s 4 ο 54s 3 ο 37s 2 ο (6 ο 5K c1) s ο K c1 ‧ 0 Now we can use the direct substitution:  −54 ‧3 ο 6 ο 5K c1 ‧ ‧  j ο 8 ‧ 4 − 37 ‧ 2 ο K c1 ‧ 0 j : −54 ‧ 3 ο 6 ο 5 K c1 ‧ ‧ 0 8
‧ 4 − 37 ‧ 2 k c1 ‧ 0 Resolve the above equations, and we receive: Kc1,u ‧ 34,66 Therefore, Kc10) for the flow control loop to function properly. Two alternative control strategies are taken into account: Method 1: use a default feed flow rate when Pcc &gt; 80% Let: Pcc = output signal from the synthesis controller (%) ~ Fsp (internal)
adjustment point for the power flow controller (%) Control strategy: 16-32 ~ ~ If Pcc &gt; 80%, Fsp ‧ Fsp, low ~ where Fsp , low is a set default flow rate that is lower than normal ~ value, Fsp nom . Method 2: Reduce the power flow when &gt; 80% Control Strategy: ~ ~ If Pcc &lt; 80%, Fsp ‧ Fsp nom − K (Pcc - 80 &gt;%) Pcc HS + - K -
+ ~ Fsp 80 % ~ Note: A check should be made to ensure that 0 ‧ Fsp ‧ 100% ALTERNATIVE selective control system B.A is recommended: 16-33 Figure S16.22. Recommended selective control system Both control valves are A-O and the transmitters are direct action, so the controller must be reverse action. When the output
concentration decreases, the controller output increases. Therefore, this signal cannot be sent directly to the power valve (it will open the valve). Using a high selector that selects the highest of these signals can solve the problem .- Flow transmitter .- Output concentration controller Therefore, when the signal from the output controller
exceeds 80%, the selector holds it and sends it to the flow controller so that the feed flow rate decreases. 16-34 16.23 ALTERNATIVE delay A.Time.- Compensation for time delay of use, e.g., Smith forecast waste concentration variable. Changes in the pH of the tank occur due to these unforeseen changes. Process gain changes also (c,
f. literature curve for strong acid-strong base) Variable waste flow rate.- Use FF control or qbase ratio in qwste. Measure qbase .- This suggests that you may want to use cataract control to compensate for upstream pressure changes, etc. Alternative B.Several advanced control strategies could provide improved process control. A
selective control system is usually used to control pH in waste water treatment. The proposed system is shown below (pH T = pH sensor, pH C = pH controller) Figure S16.23. Proposed selective control system. where S represents a selector ( &lt; or &gt;, to be specified) This combination uses multiple variables to handle to control a
single-process variable. When the pH is too high or too low, a signal shall be sent to the selectors either in the waste stream or in the base flow controllers. The exact configuration of the system depends on the transmitter, controller and valve gains. In addition, a Smith forecast indicator for the pH controller is proposed due to the long
time delay. There would be other possibilities for this process, such as an adaptive control system or a cataract control system. However, the above system can be pretty good Necessary information: 16-35 .- Descriptions of measuring devices, valves and controllers; direct action or reverse action. . - Model of the procedure for applying
the Smith Prediction Index 16.24 To change the adjustment point, the closed loop transfer function with built-in controller and fixed-state procedure (Gp Kp) είναι: 1 K G G I s P KP 1 C P Y     Ysp 1  G G 1  I s  K P 1 K I C P s 1 I s P KP Ως εκ τούτου επιτυγχάνεται απόκριση πρώτης τάξης και μπορεί να επιτευχθεί
ικανοποιητικός έλεγχος. Για μεταβολή διαταραχής (Gd = Gp): Y Gd KP K ( s) Ι    P I  D D G G 1 ο 1 K P ‧I s ο K P ‧I C P s ο1 ‧I s KP Therefore, a first order response is also received for a change of disorder. 16.25 MV: INSULIN CV pump flow rate: DV body sugar level: food intake (sugar or glucose) The standard PID
control algorithm could be used to provide a basic level of control. However, it may be subject to saturation in order to maintain blood glucose within the stated limits. Feedforward control could be used if the effect of meal intake (disorder) can be quantified depending on its glucose level. Then, the insulin injection can predict the effect of
the meal by taking preventive measures before the change in blood glucose becomes sensed. A trap of an FF/FB control could be that high insulin pump flow rates may be required in order to keep blood glucose within the desired range, and pump flow rate can be saturation. Another improvement would be adaptive control, which would
allow the controller to automatically tune for a given man in order to obtain a better response (each person's body chemistry is different). One drawback of adaptive control 16-36 is that it can be too aggressive and cause rapid changes in blood glucose. A less aggressive adaptive controller could use profit planning, where a higher
controller gain is used when the blood glucose level goes too high or too low. 16.26 If the feed temperature is too high, the slave controller will feel the temperature increase and increase the signal in the refrigerant valve, which will increase the flow of the refrigerant to reduce the temperature of the food. The master controller will feel a
slight increase in temperature in the reactor and increase the specified point of the slave controller, which in turn will increase the flow rate of the refrigerant for a second time. In this case, both the slave and the master controller work together to counteract the disorder. As a result, the disturbance is treated quickly and the temperature of
the reactor is only slightly affected. If the feed flow rate is too high, the temperature of the feed exiting the heat exchanger will increase. The slave controller will feel this and act as above by increasing the refrigerant flow rate. The increased flow rate of the higher temperature supply to the reactor will most likely increase the temperature of
the reactor and the main controller will change the specified point of the slave controller accordingly. Again the master controller The slave controller is working together to neutralize the disorder. 16.27 16-37 Figure S16.7a Control waterfall exothermic chemical reactor Figure S16.7b Diagram block of control over an exothermic chemical
reactor D1 : Reactor temperature D2 : Cooling water D3 : Temperature of the reactor wall The control system measures the temperature of the reactor wall to collect information on temperature gradients in the contents of the tank, tank, in a designated spot, and regulates cooling water makeup. The main advantage of the new cataract
control strategy is that the temperature of the reactor wall is close to a possible temperature disturbance of 16-38 gradients in the contents of the tank and the associated feedback loop can react quickly, thus improving the closed loop response. 16.28 For a linear algebraic one-input-two-output model displayed in Eqs. (1)~(2): y1 ‧ K12u1
ο b1 (1) y2 ‧ K 21u2 ο b2 (2) The y1 output can reach the y1sp adjustment point with the u1 setting based on Eq. (3): y1sp − b1 u1 ‧ (3) K12 But for y2 production, it is determined by the Eqs combination. (2) and (3), and cannot be arbitrarily determined which leads to compensation. 16-39 Chapter 17 17.1 Using Eq. 17-9, the filtered
values of xD are shown in Table S17.1 time(min) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ��� 0 0.495 0.815 1.374 0.681 1.889 2.078 2.668 2.533 2.908 3.351 3.336 3.564 3.419 3.917 3.884 3.871 3.924 4.300 4.252 4.409 ��0.8 0 0.396 0.731 1.245 0.794 1.670 1.996 2.534 2.533 2.833 3.247 3.318 3.515 3.438
3.821 3.871 3.871 3.913 4.223 4.246 4.376 ��0.5 0 0.248 0.531 0.953 0.817 1.353 1.715 2.192 2.362 2.635 2.993 3.165 3.364 3.392 3.654 3.769 3.820 3.872 4.086 4.169 4.289 Table S17.1. Un filtered and filtered data. In order to obtain the analytical solution for xD, the set(s) F(s) ‧ 1 in the given transport operation, so that 1 5 5
1  F (s) ‧ 5 ‧ −  10s 1 s(10s) ‧ s ο 1 10  Receiving reverse transformation Laplace X D (s) ‧ xD(t) = 5 (1 − e-t/10) A graphical comparison appears in Fig. S17.1 Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp and Francis J. Doyle III
17-1 4.5 4 3.5 3 XD 2.5 2 1.5 1 noisy alpha data = 0.5 alpha = 0.8 analytical solution 0.5 0 0 2 4 6 8 10 12 time (min) 14 16 18 20 Fig S17.1. Graphical comparison for noisy data, filtered data and analytical solution. As it decreases, the filtered data give a smoother curve than in the case without a filter (=1), but this noise reduction is
negotiated by increasing the deviation of the curve from the analytical solution. 17.2 The exponential filter output in Eq. 17-9 is yF (k) ‧ ym (k) ο (1 − ο) yF (k 1) (1) Replace k from k-1 to Eq. 1 gives yF (k − 1) ‧ ym (k − 1) ο (1 − ‧ ) yF (k − 2) Replacing yF (k − 1) from (2) to (1) gives yF (k) ‧ ym k ) (1 − ) ym (k − 1) μ (1 − ο) 2 yF (k − 2)
Sequential substitution of yF (k − 2) , yF (k − 3) ,... gives the final form 17-2 (2) k −1 yF (k) ‧  (1 − )i ‧ym (k − i) ο (1 − ‧) k yF (0) i ‧0 17.3 Table S17.3 lists the un filtered production and, from Eq. 17-9, the filtered data for periods 1.0 and 0.1. Notice that for the sampling period of 0,1, the and filtered outputs were taken in 0.1 time
increments, but refer only to 1.0 intervals to maintain brevity and facilitate comparison. The results show that for each t value, the data become smoother as it decreases, but at the expense of the delay relative to the average production y(t)=t. In addition, the lower sampling period improves filtering by providing smoother data and less
delay for the same value. t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ‧=1 0 1.421 1.622 3.6 206 3.856 4.934 5.504 6.523 8.460 8.685 9.747 11.499 11.754 12.699 14.470 14.535 15.500 16.987 17.798 19.140 19.575 =0.8 0 1.137 1.525 2.870 3.659 4.679 5.339 6.286 8.025 8.553 9.508 11.101 11.624 12.484 14.073 14.442
15.289 16.647 17.568 18.825 19.425 t=1 =0.5 0 0.710 1.166 2.186 3.021 3.977 4.741 5.632 7.046 7.866 8.806 10.153 10.954 11.826 13.148 13.841 14.671 15.829 16.813 17.977 18.776 =0.2 0 0.284 0.552 1.083 1.637 2.297 2.938 3.655 4.616 5.430 6.293 7.334 8.218 9.115 10.186 11.055 11.944 12.953 13.922 14.965 15.887
=0.8 0 1.381 1.636 3.227 3.916 4.836 5.574 6.571 8.297 8.688 9.741 11.328 11.770 12.747 14.284 14.662 15.642 16.980 17.816 19.036 19.655 t=0.1 =0,5 0 1.261 1.678 3.200 3.973 4.716 5.688 6.664 8.044 8.717 9.749 1 1.078 11.778 12.773 14.051 14.742 15.773 16.910 17.808 18.912 19.726 =0,2 0 0,877 1.647 2.779 3.684
4.503 5.544 6.523 7.637 8.533 9.544 10,6 58 11.556 12.555 13.649 14.547 15.544 16.605 17.567 18.600 19.540 Πίνακας S17.3. Un filtered and filtered output for sampling periods 1.0 and 0.1 17-3 Graphic comparison: 20 18 16 14 y(t) 12 10 8 6  ‧  ‧ ‧  ‧ 4 2 0 0 2 4 6 8 10 times, t 12 14 16 18 20 Figure S17.3a. Graphic
comparison for t = 1.0 20 18 16 14 y(t) 12 10 8 6 ‧ ‧ ‧ ‧ ‧ ‧ ‧4 2 0 0 2 4 6 8 10 time, t 12 14 16 Figure S17.3b. Graphic comparison for t = 0.1 17-4 18 20 17.4 Using Eq. 17-9 for ◊ = 0.2 and ‧ = 0.5, Eq. 17-18 for N * = 4, and Eq. 17-19 for y =0.5 , the results are listed and plotted below. ‧=1 0 1.50 0.30 1.60 0.40
1.70 1.50 2.00 1.50 t 0 1 2 3 4 5 6 7 8 (a) (a) 2 0 0.30 0.30 0.56 0.53 0.76 0.91 1.13 1.20 ‧=0.5 0 0.75 0.53 1.06 0.7 3 1.22 1.36 1.68 1.59 b) N*=4 0 0.38 0.45 0.85 0.95 1.00 1.30 1.30 1.30 1.30 1 1.40 1.68 (c) y=0.5 0 0.50 0.30 0.80 0.40 0.90 1.40 1.90 1.50 Table S17.4. Un filtered and filtered data. 2.5 2 y(t) 1.5 1 ‧ ‧ ‧ ‧  ‧ ‧
‧ ‧  ‧ ‧ 0.5 N*=4  y=0.5 0 0 1 2 3 4 times, t 5 6 7 8 Figure S17.4. Graphical comparison for filtered data and uneded data. 17-5 17.5 Configuration: 1 Gp = 2s+1; d(t) = 1 + 0,2 sin(t) · tF = 0 (without filtering) or 3 To do this problem, create the Simulink diagrams below. Note that the filter is represented by a first order transfer
operation with a time constant of fine tF. This appears by performing the Laplace transformation of equation 17.4 in the book. Figure S17.5a. Diagram of blocks when using a filter on the output with a time constant of 3 minutes. A sinusoidal wave of frequency 1 and width 0.2 is the input. Figure S17.5b. Block diagram when no filter is used
on the output. A sinusoidal wave of frequency 1 and width 0.2 is the input. Simulation of the diagram for 50 minutes: 17-6 1.4 Filtered without filter 1.2 Closed loop response 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 Time/ minute 35 40 45 50 Figure S17.5c. First-order process response to disturbance, d(t)=1+0.2sin(t), with and without
exponential filter. From figure S17.5c, we can see that the filter will significantly reduce oscillation with the cost of causing a lag in the first 10 minutes. 17.6 Y(s) ‧ 1 1 X (s) ‧ s ο1 s μ1 s , then y(t) = 1 − e-t For noise level  0.05 units, many different values are tested in Eq. 17-9, as shown in figure. S17.6a. While the filtered output for ◊ =
0.7 is still quite noisy, that for ◊ = 0.3 is very sluggish. Thus, ◊ = 0.4 seems to offer a good compromise between noise reduction and adding lag. Therefore, the designed first-class filter for the noise level  0.05 units is ‧ = 0.4, which corresponds to ‧F = 1.5 according to Eq. 17-8a. Noise level =  0.05 17-7 1.4 ‧ ‧ ‧ ‧ ‧ ‧
 ‧ ‧ ‧ ‧ 1.2 1 y() (t) 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 t 12 14 16 18 20 Figure S17.6a. Digital filters for noise level =  0.05 Noise level =  0.1 1.4 1.2 1 y(t) 0.8 0.6 ‧ ‧ ‧ ‧  ‧ ‧ ‧  ‧ ‧  ‧ ‧ ‧ 0.4 0.2 0 0 5 10 15 20 t Figure S17.6b. Digital filters for noise level =  0.1 Noise level =  0.01 17-8 1.4 1.2 y(t) 0.8 ‧ ‧ ‧
0.6 0.4 0.2 0 0 0 5 10 15 20 t Figure S17.6c. Response for noise level =  0.01; no filter required. Similarly, for the noise level of  0.1 units, a good compromise is ‧ =0.2 or ‧F = 4.0, as shown in the Figure. S17.6b. However, for the noise level of the units 0.01, no filter is required as shown in the Figure. S17.6c. thus =1.0, F = 0
17.7 y(k) = y(k-1)  0.21 y(k-2) + u(k-2) k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 u(k) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(k-1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Plotting this results 17-9 u(k-2) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y(k) 0 0 1.00 1.00 0.79 0.58 0.41 0.29 0.21 0.14 0.10 0.07 0.05 0.03 0.02 0.02 0.01 0.01
0.01 0.00 1.2 1 0.8 y 0.6 0.4 0.2 0 0 2 4 6 8 10 k 12 14 16 18 20 Figure S17.7. Graphical simulation of the difference equation The constant state value of y is zero. 17.8 Using the Simulink and STEM routine to convert the continuous signal into a pulse range, 12 10 8 Tm'(t) 6 4 2 0 0 5 15 20 25 time 30 35 40 45 50 Figure S17.8. Discrete
time response for the change Therefore, the maximum value of the recorded temperature is 80.7°C. point is reached in t = 12 minutes. 17-10 17.9 a) Y (z) 2.7 z −1 (z) 2.7 ο 8.1 − 1 ‧ U ( z ) z 2 − 0.5 z 0.06 z 2 − 0.5 z 0.5 z 0.5 z 0.5 z 0.5 z 0.5 z 0.06 and denominator by z2 Y (z) 2.7 z −2 ο 8.1z −3 ‧ U (z) 1 − 0.5 z −1 μ 0.06 z −2 Then Y
( z )(1 − 0.5 z −1 μ 0.06 z −2 ) ‧ z )(1 2.7 z −2 ο 8.1z −3 ) or y(k) = 0.5y(k-1) − 0.06y(k-2) + 2.7u(k-2) + 8.1u(k-3) Simulation of the difference equation yields k 0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 u(k) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17-11 u(k-3) 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y(k) 0 0 2,70 12,15 16,71 18,43 19,01 19,20 19,26 19,28 19 28 19,28 19,29 19,29 19,29 19,29 19,29 19,29 19,29 19,29 19,29 19,29 β)20 18 16 14 12 y 10 8 6 4 2 0 Simulink Difference Equation 0 2 4 6 8 10 k t 12 14 16 18 20 Figure S17.9. Simulink response to unit step change to u c) The constant state
value of y can be found in the z =1 setting. In this way, y =19.29 This result is in line with the above data. 17.10 1  Gc(s) ‧ 2 ‧1 ο  ‧ 8s  replacement s  (1-z-1)/t and accounting for t=1   2.25 − 2 z −1 1 Gc (z) ‧ 2 ‧1 ‧ ‧1  (1 − z −1 ) ‧ 8(1 − z )  Using Simulink-MATLAB, the simulation for changing a unit step on
the e(t) controller error signal is shown in the Figure. S17.10 17-12 70 60 50 b(k) 40 30 20 10 0 0 5 10 15 k 20 25 30 Figure S17.10. Open loop response for unit step change 17.11 (a) Y (z) 5( z 0.6) ‧ 2 U ( z ) z − z 0.41 Dividing both the numerator and the denominator by z2 Y (z) 5 z −1 ο 3z −2 ‧ U ( z ) 1 − z −1 ο 0.41z −2 Then Y ( z )
(1 − z −1 ‧ 0.41z −2 ) ‧ U ( z )(5 z −1 3z −2 ) or y(k) = y(k-1) − − 0.41y(k-2) + 5 (k-1) + 3u(k-2) b) Simulation of the difference equation yields 17-13 u(k) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 c) u(k-1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u(k-2) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y(k) 5 13.00
18.95 21.y 62 21.85 20.99 20.03 19.42 19.21 19.25 19.37 19.48 19.5 4 19,355 19,54 19,52 19,51 19,51 19,51 Using Simulink-MATLAB, the simulation for a unit step change in u odds 25 Difference equation Simul 20 15 y 10 5 0 0 2 4 6 8 10 kt 12 14 16 18 20 Figure S17.11. Simulink response to unit step change to u d) The constant
state value of y can be found in the z =1 setting. In this way, y =19.51 This result is in line with the above data. 17-14 17.12 a) 1 1 − z −1 7 6 Output 5 4 3 2 1 0 0 1 2 3 3 3 4 4 5 Time b) 1 1 ο 0.7 z −1 1 Exit 1 0.8 0.6 0.4 0.2 0 0 1 2 Time 1 1 − 0.7 g −1 3 2.5 2 Production c) 1.5 2 1 0.5 0 0 1 2 Time 17-15 1 (1  0.7 of )(1  0.3z 1 ) 1 1
Έոοδος 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 3 4 5 5 Ρα ε) 1  0.5 of 1 (1  0.7 of 1 ) (1  0.3z 0.3z ) 1 Production 0.8 0.6 0.4 0.2 0 0 1 2 Time f) 1 − 0.2 z −1 (1 0.6 z −1 )(1 1 − 0.3z −1 ) 1 0.8 0.6 0.4 0.2 0 0 1 2 17-16 Conclusions: .- A pole in z = 1 causes instability. .- Poles only on a positive real axis give oscillation free answer. .- The
Poles on the negative real axis give a oscillating response. .- Poles on the positive real axis mitigate the oscillating reactions. .. - Zeros on the positive real axis increase oscillations. .- Zeros closer to z = 0 contribute less to increased oscillations. 17.13 Using Simulink, the response to a unit setting point change appears in the Figure.
S17.13a 1.8 1.6 1.4 Output 1.2 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 Time 25 30 35 40 Figure S17.13a. Closed loop response to unit adjustment point change (Kc = 1) Therefore the controlled system is stable. The final controller gain for this process lies in the test and error 17-17 8 7 6 Output 5 4 3 2 1 0 0 5 10 15 20 Time 25 30 35 40 Figure
S17.13b. Closed loop response to unit adjustment point change (Kc =21.3) Then Kcu = 21.3 17.14 Using Simulink-MATLAB, these final gains are located: t = 0.01 2 1.8 1.6 1.4 Production 1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 Time 4 5 6 Figure S17.14a. Closed loop response to unit adjustment point change (Kc =1202) t = 0.1 17-18 2 1.8 1.6
1.4 Output 1.2 1 0.8 0.6 0.4 0.2 0 0 5 10 15 Time image S17.14b. Closed loop response to unit adjustment point change (Kc =122.5) t = 0.5 2 1.8 1.6 1.4 Output 1.2 1 0.8 0.6 0.4 0.2 0 0 5 10 15 Time image S17.14c. Closed loop response to unit adjustment point change (Kc =26.7) Therefore t = 0.01 t = 0.1 t = 0.5 Kcu = 1202 Kcu
= 122.5 Kcu = 26.7 As noted above, reducing the sampling time makes the allowed controller gain increments. For small prices t, the final profit is large enough to guarantee a wide range of stability. 17-19 17.15 Using Simulink-MATLAB Kc = 1 1.4 1.2 Output 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 times 30 35 40 45 50 Figure S17.15a.
Closed loop response to unit adjustment point change (Kc =1) Kc = 10 1.8 1.6 1.4 Output 1.2 1 0.8 0.6 0.4 1 0.2 0 0 0 5 10 15 20 25 time 30 35 40 45 50 Figure S17.17.17.17 15b. Closed loop response to unit adjustment point change (Kc =10) 17-20 Kc = 17 2.5 2 Output 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 times 30 35 40 45 50 Figure
S17.15c. Closed loop response to unit adjustment point change (Kc =17) the maximum controller gain is Kcm = 17 17.16 Gv(-a) = Rv = 0.1 ft3 / (min)(ma) Gm(s) = 4 0.5s 1 To obtain Gp(1) s), write the mass balance for the tank as A dh ‧ q1 q1 q 2 − q3 dt Using deviation variables and taking Laplace convert As H (s) ‧ Q1 (s) q2 (
s ) − Q3 (s) Therefore , G p(s) ‧ H  (s) −1 −1 ‧ Q3(s) Up to 12.6s Using Simulink-MATLAB, Kc = -10 1.4 1.2 1 y(t) 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 time 30 35 40 45 50 Figure S17.16a. Closed loop response to unit adjustment point change (Kc = -10) Kc = -50 1.8 1.6 1.4 1.2 y(t) 1 1 0.6 0.4 0.2 0 0 5 10 15 20 25 time 30 35 40 45
50 Figure S17.16b. Closed loop response to unit adjustment point change (Kc = -50) 17-22 Kc = -9 2 3.5 3 2.5 2 y(t) 1.5 1 0.5 0 -0.5 -1 1 -1.5 0 5 10 15 20 25 time 30 35 40 45 50 Figure S17.16c. Closed loop response to unit adjustment point change (Kc = -92) Therefore, the closed loop system is fixed for -92 &lt; Kc &lt; 0 As mentioned
above, it takes place after a change at the adjustment point. 17.17 a) The closed loop response for set-point changes is GcG(s) Y(s) ‧ Ysp(s) 1 gcG (s) then Gc (z) ‧ 1 (Y/Ysp) G 1 − (Y/Ysp ) We want the closed loop system presents a first row plus dead response time, e − hs (Y / Ysp ) ‧ -s ο1 or (1 − A) z − N −1 (Y / Ysp ) ‧ 1 − Az
−1 In addition, 17-23 where A = e-t/- G (s) ‧ e −2 s 3s 1 or G(z) ‧ 0.284z −3 1 − 0.716z −1 Thus, the resulting digital controller is Dahlin's Eq. 17-66 controller. Gc (z) ‧ (1 − A) 1 − 0.716 z −1 1 − Az −1 − (1 − A) z − N −1 0.284 (1) If value -=1 is taken into account, then A = 0.368 and Eq. 1 is 0.632 1 − 0.716 z −1 Gc (z) ‧ 1 − 0.368 z
−1 − 0.632 z −3 0.284 (2) b) (1-z-1) is a denominator factor in Eq. 2, showing the presence of integrated action. Then, no offset occurs. (c) From Eq. 2, the denominator of Gc(z) contains a non-zero z-0 term. Therefore, the controller is of course feasible. d) First adjust the process time delay to maintain a zero order by adding t/2 to get a
time delay of 2 + 0.5 = 2.5 minutes. Then, obtain the CONTINuOS PID controller setting based on the ITAE setting relationship (adjustment point) in table 12.3 with K = 1, ‧=3, - = 2.5. So KKc = 0.965(2.5/3) − 0.85 , Kc = 1.13 ο/■I = 0.796 + (-0.1465)(2.) 5 /3), , ,I = 4.45 ‧D/0.929(2.5/3)0.308 D = 0.78 Using the position format of‧ , ل = 
PID (Eq. 8-26 or 17-55)    1  Gc (z) ‧ 1.13 ‧1 ο 0.225 ‧ 0.78(1 − z −1 )   −1  ‧ 1 − z    2.27 − 2.89 z −1 ‧ 0.88 z −2 ‧ 1 − z −1 Using Simulink-MATLAB, examine the performance of the controller: 17-24 1.4 1.2 1 y(t) 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 Time 30 35 40 45 50 Figure S17.17. Closed loop response to
change unit step at specified point. Therefore, the performance shows 21% excess and also wobbles. 17.18 (a) C2's(s) t ysp(z) ysp(z) Km +- E(z) P(z) D(z) M(s) H(s) G v)G d(s) Q2's Gp (s) B(s) B(s) B(s) Gm(s) The transport functions in the various blocks are as follows. Km = 2.5 ma / (mol solute/ft3) Gm(s) = 2.5e-s 17-25 + + C3's)
C3(z) H(s)= 1 − e −s Gv(s) = Rv = 0.1 ft3/min.ma To obtain gp(s) and G d(s), write the soluble for the rest of the tank as V3 ‧ q1c1 q2 (t) − q3c3 (t) dt Line and use the deviation variables V dc3 ‧ q2 c2 ο c2 q2 − q3 c3 dt Receiving Laplace transformation and substitution 30SC3(s) ‧ 1.5Q2 1.5Q2 (s) 0.1C 2 (s) −
3C3(s) Therefore, b) G p (s) ‧ C3 (s) 1.5 0.5 ‧ Q2 (s) 30s ( 3 10s) 1 (a) s) 0.1 0.033 ‧ C2 (s) 30s 3 10s 1 G p (z) ‧ C3 (z) 0.05 ‧ Q2 (z) 1 − 0.9 z −1 Analog controller gives a first command exponential response to a unit step change in integral C2. This controller will also provide a first order response to adjustment point
changes. Therefore, the desired response could be determined as (Y/Ysp) ‧ 1 1 17.19 17-26 HG p (z) K mGc ( z ) Y ‧ Ysp 1 hg p Gm ( z )Gc ( z ) Resolve for Gc(z) Gc (z) ‧ Y Y HG p (z) K m − HG pGm (z ) Ysp (1) Since the process is not time-delayed, N = 0. Therefore Y ‧ ‧ Ysp  (1 − A) z −1  ‧ 1 − Az −1 d Extra HG p
(z) ‧ z −1 1 − z −1 HG p Gm ( z ) ‧ z −2 1 − z −1 Km = 1 Replacement in (1) gives (1 − A) z −1 1 − Az −1 Gc ( z ) ‧ 1 z z −2 (1 − A) z −1 − 1 − z −1 1 − z −1 1 − z −1 1 − Az −1 Back ( gc ( z ) ‧ (1 − A) − (1 − A) z −1 1 − Az −1 − (1 − A) z −2 Using Simulink-MATLAB; the closed loop response is displayed for different values of A
(actually different values of -) : -=3 A = 0,716 17-27 -=1 - = 0,5 A = 0,368 A = 0,135 5 4,5 4 3,5 y(t) 3 2.. 5 2 1.5 1 --------------------------------------------------------------------------------------------------------- Closed loop response to change the drive step in the disturbance. 17.20 The closed loop response for changing the adjustment point is HG(z )
K vGc ( z ) Y Ysp 1 hg (z) K v K m ( z ) Gc ( z ) Therefore Gc ( z ) Y Ysp 1 HG ( z ) K K K Y v m Ysp The process transfer function is 2.5 G(s) ‧ 10s 1 or HG (z) ‧ 17-28 0.453z −1 1 − 0.819z −1 (- = 0 thus N = 0) Minimum prototype controller implying - = 0 (e.g., One ( 0) . Then, Y  z 1 Ysp Therefore the controller is 1  0.819z 1 z



1 Gc ( z )  0.453z 1 0.2  (0.2)(0.25) z 1 Simplifying, Gc ( z )  z 1  0.819z 2 1  0.819z 1  0.091z 1  0.023z  2 0.091  0.023z 1 17.21 a) From Eq. 17-71, the Vogel-Edgar controller is GVE  (1  a1 z 1  a 2 z 2 )(1  A) (b1  b2 )(1  Az 1 )  (1  A)(b1  b2 z 1 ) z  N 1 where A = e-t/
= e –1/5 = 0.819 Using z-transforms, the discrete-time version of the second-order transfer function yields a1 = -1.625 a2 = 0.659 b1 = 0.0182 b2 = 0.0158 Therefore GVE (1  1.625z 1  0.659z 2 )0.181  (0.0182  0.0158)(1  0.819z 1 )  0.181(0.0182  0.0158z 1 ) z 1  0.181  0.294z 1  0.119z 2 0.034 
0.031z 1  0.003z − 2 Using Simulink-MATLAB, the controlled variable y(k) and the output of the p(k) controller to change the unit step in ysp are displayed. 17-29 Controlled variable y(k): 1 0.9 0.8 0.7 y(k) 0.6 0.5 0.4 0.3 0.2 0 0 5 10 15 20 25 k Figure S17.21a. Controlled variable y(k) to change unit step in ysp. Controller output p(k):
5.5 5 4.5 4 p(k) 3.5 3 2.5 2 1.5 1 0.5 0 5 10 15 20 25 k Figure S17.21b. Controlled output p(k) to change step unit in ysp. 17-30 17.22 Dahlin Controller from Eq. 17-66 to a1 = e-1/10=0.9, N=1, and A=e-1/1 = 0.37, the dahlin controller is (1 − 0.37) 1 − 0.9 z −1 GDC ( z ) ‧ 1 − 0.37 z −1 − (1 − 0.37) z −] 2 2(1 − 0.9) 3.15 − 2.84z −1 3.15 −
2.84z −1 ‧ 1 − 0.37 z −1 − 0.63z −2 (1 − z −1 )(1 μ 0.63z −1 ) Using Simulink, the output of the controller and the controlled variable are presented below: 3.5 3 2.5 5 p(t) 2 1.5 1 0.5 0 0 5 10 15 20 25 times 30 35 40 45 50 Figure S17.22a. Controller output for Dahlin controller. 1.4 1.2 Output 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 time 30 35
40 45 50 Figure S17.22b. Closed loop response for Dahlin controller. 17-31 So there is no ringing (this is expected for a first-class system) and no setting is required for ringing. PID (ITAE setpoint) For this controller, adjust the process time delay for the zero-order hold by adding t/2, and K=2, =10, =1.5 obtain the continuous PID
controller tunings from Table 12.4 as KKc = 0.965(1.5/10)  0.85 , Kc = 2.42 /I = 0.796 + (-0.1465)(1.5/10) , D/ = 0.308(1.5/10)0.929 , , I = 12.92 D = 0.529 Using the position form of the PID control law (Eq. 8-25 or 17-55)  1  1   Gc ( z )  2.42 1   0.529(1  z 1 )   1   12.92  1  z    3.89 
4.98z 1  1.28z 2 1  z 1 By using Simulink, 4 3.5 3 2.5 p(t) 2 1.5 1 0.5 0 -0.5 -1 0 5 10 15 20 25 time 30 35 40 45 50 Figure S17.22c. Controller output for PID (ITAE) controller 17-32 1.4 1.2 Output 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 Time 30 35 40 45 50 Figure S17.22d. Closed loop response for PID controller (ITAE). Dahlin's
controller delivers better closed loop performance than PID because it includes time delay compensation. 17.23 From Eq. 17-66 to a1 = e-1/5=0.819, N=5, and A=e-1/1 = 0.37, the dahlin controller is GDC ( z ) ‧ (1 − 0.37) 1 − 0.819z −1 1 − 0.37 z −1 − (1 − 0.37) z −6 1.25(1 − 0.819) 2.78 − 2.28z −1 ‧ (1 − 0.37 z −1 − 0.63z −6 ) Using
Simulink-MATLAB, the output of the controller is displayed in Fig. S17.23 17-33 3 2.5 p(k) 2 1.5 1 0.5 0 5 10 15 20 25 k Figure S17.23. Controller output for Dahlin controller. As noted in Fig. S17.23, no ringing occurs. This is expected for a first-class system. 17.24 Dahlin Controller Using Table 17.1 with K=0.5 , r =1.0, p =0.5, G(z) ‧
0.1548 z −1 μ 0.0939 z −2 1 − 0.9744 −z 1 μ 0.2231z −2 From Eq. 17-64, with - = t = 1, Dahlin controller is G DC ( z ) ‧ (1 − 0.9744z −1 ο 0.2231z −2 ) 0 ,632z −1 0.1548z −1 0.0939z − 2 1 − z −1 0.632 − 0.616z −1 1 0.141z −2 − z −1 )(0.1548 ) 0.0939z −1 ) From Eq. 17-63, 17-34 Y (z) 0.632 z −1 ‧ Ysp (z) 1 − 0.368 −z 1 y(k) =
0.368 y(k-1) + 0.632 ysp(k-1) Since this is first row, no overrun occurs. Using Simulink-MATLAB, the controller output is displayed: 5 4 p(k) 3 2 1 0 -1 0 5 10 15 20 25 k Figure S17.24a. Controller output for Dahlin controller. As noted in the Figure. S17.24 a, ringing happens for Dahlin's controller. Vogel-Edgar Controller From Eq. 17-71, the
Vogel-Edgar controller is GVE ( z ) ‧ 2.541 − 2.476z −1 − 0.567z −2 1 − 0.761z −1 − 0.239 − 2 Using Eq. 17-70 and simplification, Y ( z ) (0.393z −1 0.239 z −2 ) ‧ Ysp ( z ) 1 − 0.368 z −1 y(k) = 0.368 y(k-1) + 0.393 ysp(k-k) 1) + 0.239 y sp (k-2) Again no excess occurs since y(z)/ysp(z) is first order. Using Simulink-MATLAB, the output
of the controller is shown below: 17-35 2.6 2.4 2.2 2 p(k) 1.8 1.6 1.4 1.2 1 0.8 0 0 5 10 15 20 25 k Figure S17.24b. Controller output for the Vogel-Edgar controller. As noted in the Figure. S17.24 b, the V-E controller does not ring. 17.25 a) Material Balance for the tanks, dh1 1  q1  q2  (h1  h2 ) dt R dh2 1 A2  (h1  h2 ) dt R A1
where A1 = A2 = /4(2.5)2=4.91 ft2 Using deviation variables and taking Laplace transform A1sH1( s)  Q1( s)  Q2 ( s)  A2 sH 2 ( s)  1 1 H1( s)  H 2 ( s ) R R 1 1 H1( s)  H 2 ( s) R R 17-36 (1) (2) From (2) H 2 ( s )  1 H1( s ) A2 Rs  1 Substituting into (1) and simplifying ( A1 A2 R) s 2  ( A1  A2
) s  H1( s )   A2 Rs  1Q1( s)  Q2 ( s)  G p ( s)  H1( s) ( A2 Rs  1) 0.204( s  0.102)   2 Q2 ( s) ( A1 A2 R) s  ( A1  A2 )s s (s  0.204) Gd ( s)  H1( s) A2 Rs  1 0.204( s  0.102)   2 Q1( s) ( A1 A2 R) s  ( A1  A2 ) s s( s  0.204) Using Eq. 17-64, with N =0, A=e-t/ and HG(z)
= KtKvHGp(z), Dahlin's controller is GDC ( z )  1 (1  A) z 1 HG (1  z 1 ) Using z-transforms, HG(z)=KtKvHGp(z)= 0.202 z 1  0.192 z 2 (1  z 1 )(1  0.9 z 1 ) Then, GDC ( z )  (1  z 1 )(1  0.9 z 1 ) (1  A) z 1  (0.202 z 1  0.192 z 2 ) (1  z 1 )  b) GDC  (1  A)(1  0.9 z 1 ) 0.202 
0.192 z 1 (1  A)(1  0.9 z 1 ) 0.202  0.192 z 1 By using Simulink-MATLAB , 17-37 0 -0.2 -0.4 -0.6 p(k) -0.8 -1 -1.2 -1.4 -2 1.6 -1.8 -2 0 5 10 15 20 25 times 30 35 40 45 50 Figure S17.25. Controller output for dahlin controller. As noted in the Figure. S17.25, the controller output does not oscillate. c) This controller is naturally
liquid since the z-0 factor in the denominator is non-zero. Thus, the controller is of course feasible for all values of -. (d) - is the time constant of the desired closed loop transfer operation. From the show to gp(s) the open-loop the time constant is 1/0.204 = 4.9 min. A conservative initial guess for - would be equal to the open loop time
constant, that is, - = 4.9 minutes. If the accuracy of the model is reliable, a bolder guess will include a smaller -, say 1/3 rd of open-loop fixed time. In that case, the initial guess would be  = (1/3) � 4.9 =1.5 min. 17.26 G f ( s)  K (1s  1) P( s )  2 s  1 E (s) Substituting s  (1  z 1 ) / t into equation above: 1 (1  z 1 ) /
t  1 1 (1  z 1 )  t (1  t )  1 z 1 G f ( z)  K K K 2 (1  z 1 ) / t  1 2 (1  z 1 )  t (2  t )  2 z 1 17-38 Then, G f ( z)  b1  where b1  b2 z 1 P( z )  1  a1 z 1 E ( z ) K (1  t ) 2  t b2  , − K ‧1 ‧2 ο  α1 and −2 ο ο ο 2 ο t, (1 ) a1 z −1 ) P(z) ‧ (b1 ) b2 z
−1 ) E ( z ) Conversion of the controller transfer function into a difference equation: p(k ) ‧ −a1 p(k − 1) μ b1e(k) μ b2e(k − 1) Using Simulink-MATLAB; discrete and continuous responses are compared : ( Note that b1=0.5 , b2 = −0.333 and a1= −0.833) 1 0.9 Output 0.8 0.7 0.9 7 6 0.5 Continuous Continuous Response Discrete
Response Discrete Response Discrete Response 0.4 0 5 10 15 20 25 Time 30 35 40 45 50 Figure S17.26. Comparison between discrete and continuous controllers. 17-39 Chapter 18 18.1 McAvoy has reported the PI controller settings shown in Table S18.1 and the fig adjustment point responses. S18.1a and S18.1b. When both
controllers are in automatic with Z-N settings, unwanted damped oscillations occur due to control loop interactions. The multi-signal adjustment method results in more conservative settings and more sluggish responses. T17 Controller Pair – R T4 – S Tuning Method Single Loop/Z-N Single Loop/Z-N Kc -2.92 4.31 ‧I(min) 3.3 18 1.15 T17
– R T4 - S Multiloop Multiloop -2.59 4.39 2.58 2.58 Table S18.1. Controller settings for exercise 18.1 1.6 1.4 1.2 T17 1 0.8 0.6 Single loop adjustment (one loop in manual) Single loop adjustment (both loops in automatic) multi-signal adjustment 0.4 0.2 0 5 10 15 Time (min) Figure S18.1a. Set the point answers for exercise 18.1. Analysis
for the T17 Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and Francis J. Doyle III 18-1 1.8 1.6 1.4 T4 1.2 1 0.8 0.6 Coordination of a loop (one loop in the manual) Coordination of a loop (both loops in automatic) Multisup setting 0.4 0.2 0 0 5
10 15 Time(min) Figure S18.1b. Set point responses for exercise 18.1. Analysis for T4 18.2 The characteristic equation is identified by identifying any of the four transport functions Y1(s)/Ysp1(s), Y1(s)/Ysp2(s), Y2(s)/Ysp1(s) and Y2(s)/Ysp2(s), and setting its denominator equal to zero. In order to to specify, n.e.c./Y1/Ysp1(s), set Ysp2 =
0 0 Fig 18.3b and use the algebra block diagram to obtain C1(s) ‧ GP12 GC1 [ R1(s) − C1(s)] GP11 M1 (s) (1) M1(s) ‧ GC2 (--[GP21 M1 ((s) GP22 GC1 [ R1 (s) − C1 (s)]])) (2) Simplification (2), M1(s) − GC22 GC1 1 ( GC2 GP21 ) [ R1(s) − C1(s)] Replacement (1 3) in (1) and simplification gives 18-2 (3) (GC1 GP12) )(1 ) GC2 GP21 )
− GC1 GC2 GP11 GP22 C1 (s) ‧ R1 (s) (1 ) GC1 GP12 )(1 GC2 GP21 ) − GC1 GC2 GP11 GP22 Therefore characteristic equations are (1 +Gc1 Gp12) (1 + Gc2 Gp21) – Gc1 Gc2 Gp11 Gp22 = 0 If either Gp11 or Gp22 is zero , this is reduced to (1 + Gc1 Gp12) = 0 or (1 + Gc2 Gp21) = 0 So the stability of the overall system simply
depends on the stability of the two individual feedback control loops in Fig. 18.3b from the third loop containing Gp11 and Gp22 is damaged. 18.3 Consider the bar diagram for control plan 1-1/2-2 in Fig.18.3a but including a sensor and valve transfer function (Gv1,Gv2) , (Gm1, Gm2) for each output (y1,y2). The following expressions are
easily derived, Y(s) = Gp(s) U(s) or (s) Y1(s)   G p11(s)  U1(s)  Y(s)  G(s)  (s)    p 22    2   p 21  2  (1) U(s) = Gc(s) GV(s) E(s) or 0   E1(s)  U1 (s)  Gc1(s) Gv1 s ‧  )U in)  ‧ ‧ 0 Gc 2 (s)Gv 2 οs   E2 (s)   2   (2) E(s)= Ysp(s)-Gm(s) or 0   E1(s)  P1 (s) (s) 
Gm1 (s) ◊ E(s)  ‧ Y(s)  − 0 Gm 2 (s)   2   sp 2   Y1 (s)  )Y (s)   2  (3) If Eqs. 1 to 3 are resolved for the output response to variations in specified points, the result is 18-3 Y (s) = Gp(s) Gc(s) Gv(s) [I + Gp(s)Gc(s)Gm(s)]-1 Ysp(s) = where I am the ID table. In terms of the component transfer function the matrix
h12 ( s)  1  h11 ( s) V = I + Gp(s)Gc(s Gv(s))Gm(s) =    h21 ( s) 1  h22 ( s) where h11(s)= Gp11(s) Gc1(s) Gv1(s) Gm1(s) h12(s)= Gp12(s) Gc2(s) Gv2(s) Gm2(s) h21(s)= Gp21(s) Gc1(s) Gv1(s) Gm1(s) h22(s)= Gp22(s) Gc2(s) Gv2(s) Gm2(s) The inverse of V, if it exists, is V-1  1 1  h22 ( s)  h12 ( s )    
h21 ( s) 1  h11 ( s ) where  = (1+h11(s))(1+h22(s))-h12(s)h21(s) By accounting for Y(s) = [Gp(s)Gc(s) Gv(s) V-1(s)] Ysp (s), the closed-loop transfer functions are (see book notation): T11(s) = 1 h11 (s)(1  h22 (s))  h12 (s)h21 (s) Gm1 ( s) T12(s) = h12 ( s ) Gm 2 ( s) T21(s) = h21 ( s) Gm1 ( s) T22(s) = 1 h22 (s)(1
 h11 (s))  h21 (s)h12 (s) Gm 2 ( s ) 18.4 From Eqs. 6-91 and 6-92 and by natural reasoning, it is obvious that although h is affected by both manipulated variables, T is affected only by wh and is 18-4 regardless of w. Therefore, T can only be combined with wh. So the coupling based on this for the control system is T-wh, h-w. 18.5
System transfer mode matrix: 1.5   2 ‧10s ο 1 s ο 1  Gp ο s ‧ ‧  2  ¦ 1.5 ‧ s ο 1 10s ο 1  � (1) Kc1 = 1 Kc2 = −1: coupling is unstable Step Response of Y 1 4 1-1-1/2-2 coupling 3.5 3 2.5 2 1.5 1 0.5 0 10 20 30 40 50 Time 60 70 80 Figure S18.5a. Response step of Y1 18-5 90 100 Response step of Y 2 6 1-1/2-2
mating 5 4 3 2 1 0 0 10 20 30 40 50 Time 60 70 80 90 100 Figure S18.5b Response Step Y2 � K1c = 1c = 1c = 1c = 1 Kc2 = 0: resolution is constant Step Response of Y 1 0.7 1-1/2-2 match 0.6 0.5 0.4 0 0.3 0.2 0.1 0 0 10 20 30 40 50 Time 60 70 80 Figure S18.5c. Step Answer of Y1 18-6 90 100 Step Answer of Y 2 1.4 1-2 1/2-2
coupling 1.2 1 0.8 0.6 1 0.4 0.2 0 0 10 20 30 40 50 Time 60 70 80 90 100 Figure S18.5d. Y2 response step � Kc1 = 1; Kc2 = 2: coupling is unstable Step Response of Y 1 46 6 x 10 1-1/2-2 coupling 5 4 3 2 1 0 -1 -2 0 50 100 150 Time 200 250 Figure S18.5e. Step response of Y1 18-7 300 Step response of Y 2 46 1.5 x 10 1-1/2-2 pairing
1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 0 50 100 150 Time 200 250 Figure S18.5f. Step response of Y2 18.6 i) Calculate the steady-state gains as 0.97  0.93  X D  K11    8 �104 min/lb    R (125  175) lb/min  S 0.96  0.94  X D  K12    5 �103 min/lb    S  R (24  20) lb/min 0.06  0.04 
X B  K 21    4 �104 min/lb    R (175  125)lb/min  S 0.04  0.06  X B  K 22    5 � 10 3 min/ lb    S ( 24  20 ) lb / min  R Substituting into Eq. 18-34 , 18-8 300 -■ 1 ‧2 (5*10 )(4*10--4) 1] (--8*10--4 )(--5*5*4) 10--3 ) −3 Thus, RGA is R S x D  2 −1  ‧  x B ‧ −1 2  Pairing for
positive relative gains requires XD-R, XB-S. (ii) This coupling also appears appropriate from dynamic estimates; due to the delay in the column, R affects XD earlier than XB, and S affects XB earlier that XD. (a) The corresponding fixed-state profit table is 18.7 12.8 −18.9  K -   6.6 −19.4  Using the formula in Eq. 18-34 , we have
received -11 = 2.0 So the RGA is  2 −1 L ‧  −1 2  Matching for positive relative gains requires XD-R and XB-S. b) The same coupling is recommended on the basis of dynamic issues. Transfer modes between XD and R contain less dead time and shorter time constant, so XD will respond very quickly to changes in R. For the
XB-S pair, the time constant is not favorable but the dead time is significantly shorter and the response will be quick as well. 18-9 18.8 a) From Eq. 6-105 G p11 (s) ‧ (Th − T) / w , οs 1 G p12 (s) ‧ 1/ AP s G p22 (s) ‧ G p21(s) ‧ thus K11 ‧ Th − T , w , K12 ‧ (Tc) T ) / w οs ο 1 1/ AP s Tc − T w and from gp21, Gp22 contain
integration elements, 1 s ο0 AP 1 K 22 ‧ lim sGP22(s) ‧ s ο0 AP K 21 ‧ lim sGP21 (s) ‧ Replacement in Eq. 18-34, -■ T −T 1 ‧ h T − T Th − Tc 1− c Th − T Therefore 0 ‧ - ‧ 1, and the choice of coupling depends on whether - &gt; 0.5 or not. The RGA is wh  Th − T T − T ¦ T ¦ h c − T −T -T c h ‧ ‧ Th − Tc b) wc T − Tc  
Th − Tc  Th − T   Th − Tc  Suppose that ‧ 0.5, so that the coupling is T-wh, h-wc. Suppose the valve gains are unity. Then the ideal disconnection control system will be like in Fig.18.9 where Y1�T, Y2�h, U1�wh, U2�wc, and using Eqs. 18-78 and 18-80, 18-10 (c) T21(s) − (1/ AP) s ‧ −1 (1/AP) s T12 (s) ¦ [(Tc − T ) / w] /(s)
T − T c ‧ [(Th − T) / w] /(s) T − T The above disconnects are naturally feasible. 18.9 OPTION A: Controlled variable: T17, T24 Manipulated variables: u1, u2 The corresponding fixed-state gain matrix is 1.5 0.5 K-   2 1.7  Using the formula in Eq.18-34, we receive So the RGA is -11 = 1.65  1.65 −0.65 L ‧  −0.65 1.65 
OPTION B: Controlled variable: T17, T30 Manipulated variables: u1, u2 The corresponding fixed-state gain matrix is 1.5 0.5 K¦  3.4 2.9 Using the formula in Eq.18-34, so we receive the RGA is  1.64 −0.64  L ‧  −0.6 4 1.1.00.00.64 64  18-11 -11 = 1.64 OPTION C: Controlled variable: T24, T30 Manipulated variables:
u1, u2 The corresponding constant state gain matrix is  2 1.7  K‧  3 ,4 2.9 Use of the formula in Eq.18-34 , we receive -11 = 290 So the RGA is  290 −289 L ‧ ‧   −289 290  Therefore options A and B yield about the same results. Option C is the least desirable for configuring multi loop control because it will be
difficult to change outputs without very large changes to the two inputs. 18.10 (a) The material balance for each of the two tanks is A1 h dh1 ‧ q1 q6 − 1 − K (h1 − h2 ) dt R1 (1) A2 h dh2 ‧ q2 − 2 K (h1 h2 ) dt R2 (2) where A1, A2 are transverse areas of tanks 1, 2, respectively. Linearizing, putting in deviation variable form, and taking
Laplace transform, A1sH1 ( s)  Q1 ( s)  Q6 ( s)  ( A2 sH 2 ( s)  Q2 ( s)  ( Let K1 � 1 2 R1 h1 1 2 R1 h1 1 2 R2 h2 and K 2 � ) H1 ( s)  K [ H1 ( s)  H 2 ( s)] ) H 2 ( s)  K [ H1 ( s)  H 2 ( s)] 1 2 R2 h2 18-12 , and Solve the above equations simultaneously to get, [( A1s  K1  K )( A2 s  K 2  K ) 
K 2 ]H1 ( s ) (3)  ( A2 s  K 2  K )[Q1 ( s )  Q6 ( s )]  KQ2 ( s ) [( A1s  K1  K )( A2 s  K 2  K )  K 2 ]H 2 ( s ) (4)  K [Q1 ( s )  Q6 ( s )]  ( A1s  K1 K)Q2 ( s ) The four fixed-state process gains are determined using Eqs. 3 and 4 as  H ' ( s)  K2  K K11  lim 1   s 0 Q ' ( s )  1  K1 K 2
 K ( K1  K 2 )  H ' ( s)  K K12  lim 1   s 0 Q ' ( s )  2  K1 K 2  K ( K1  K 2 )  H ' ( s)  K K 21  lim 2  s 0 Q ' ( s )  1  K1 K 2  K ( K1  K 2 )  H ' ( s)  K1  K K 22  lim 2   s 0 Q ' ( s )  2  K1 K 2  K ( K1  K 2 ) Substituting into Eq. 18-34  ( K 2  K )( K1  K ) 1  2 K K1 K 2
 K ( K1  K 2 ) 1 ( K 2  K )( K1  K ) Thus RGA is q1 q2 ( K1  K )( K 2 K )  h1 −K 2 1 ¦  K1 K 2 K ( K1 K 2 )  −K 2 (K1 K )(K 2 K )  h2 (b) Replacement of the specific numeric values; the RGA is q1 h1  2.50 ‧ h2  −1.50 q2 −1.50 2.50  18-13 For the relevant gains to be positive, the preferred coupling is h1-q1,
h2-q2. 18.11 (a)  The (s)  Q (s)  1 , U(s) ‧ 1 , D(s) ‧ ‧ ‧   ‧   οX)    οX  2   2  Then, with inspection of the Eqs. (3) and (4) in the solution of exercise 18-10, GP(s) ‧  A2 s ο K 2 K 1 2 K ( A1s ) K1 K ) (A2 s ) K 2 K ) − K   A 1 (A1s) K1 K 2 K  K and DG (s) ‧ 1 ( A1s K1 K ) (A2 s K 2 K )
− K 2  A2 s K 2 K  ¦ K    where A1, A2, K1, K2 are defined in the solution of exercise 18.10. b) The block diagram for coupling h1-q1 / h2-q2 is identical to Fig.18.3a with the addition of load. Thus the mark D passes through a bar Gd1 whose production is added to the summer with the production of Y1. Similarly, the summer
leading to Y2 is affected by the signal D(s) passing through the block Gd2. 18.12 F = 20 u1 (P0 – P1) F = 30 u2 (P1 – P2) (1) (2) Taking P0 and P2 to be stable, Eq. 1 gives 18-14  �F ‧ ‧ �u1   �P   ‧ 20( P0 − P1 ) − 20u1 ‧ ‧ 1  ‧ �u1  u2  u2 (3)   ‧  20 ( P0 − P1)  P2 (4) and  �F ‧ ‧ �u1 and Eq. 2
gives  �F ‧ ‧ ‧ �u1   �P   30M 2 1 ل ل  ‧ �u1  u2  u2 (5)  �P  Replacement for ‧1  from (5) to (3) and simplification ‧ �M 1  M 2  �F ◊ ◊ �u1  20( P0 − P1)  ‧ 20u1  u2 1 ο 30u 2 (6) Using Eq. 18-24 , (�F / �u1 ) u2 1 20u1 (�F / �u1) P2 1- 30u 2 In nominal conditions -11 ‧ u1 ‧ F ‧ 1/ 2 20(
P0 − P1 ), (7) u2 ‧ F ‧ 2/3 30( P1 − P2 ) Replacing in (7), -11 = 2/3 &gt; 0.5. Therefore, the best controller pairing is F-u1, P1-u2. 18.13 a) Basic balances for the tank, 18-15 dh ‧ q1 q2 − q3 dt d ( Ahc3 ) ‧ c1q1 c2 q2 − c3q3 dt (1) A (2) Replacing dh/dt from (1) to (2) and Ah dC3  (c1  c3 )q1  (c2  c3 )q2 dt (3) Linearizing, using
deviation variables, and taking the Laplace transform AhsC3 ( s)  (c1  c3 )Q1 ( s )  q1C3 ( s )  (c2  c3 )Q2 ( s )  q2C3 ( s ) Since q1  q2  q3 , this becomes  Ah    c1  c3   c2  c3    s  1 C3 ( s)    Q1 ( s )    Q2 ( s ) q q q 3  3     3   (4) Similarly from
(1), AsH ( s )  Q1 ( s )  Q2 ( s )  Q3 ( s ) Therefore,  H ( s )    Q1 ( s ) G(s)     C3 ( s )  Q  (s)  1 1 H ( s )    As  Q3 ( s )      (c1  c3 ) / q3 C3 ( s )       Ah  s  1   Q3 ( s )   q  3  Substituting numerical values  0.1415  s G(s)    0.0075
1.06s  1 0.1415   s   0  For the control valves 18-16 (5)  1  As    0    Gv ( s)  0.15 0.15  0.167 s  1  10    s 1  60  (6) Thus, 0.0212   s(0.167 s  1) GP ( s)  Gv ( s)G ( s)   0.0011   (1.06s  1)(0.167 s  1)  0.0212  s(0.167 s  1)    0   b) Since C3
( s) / Q3 ( s) = 0 , c3 is not affected by q3 and must be combined with q1. Thus, the coupling to be used is h-q3, c3-q1. (c) For the coupling specified above, Fig.18.9 may be used with Y1� H , Y2� C3, U1� Q3, U2� Q1 . Notice that this pairing requires gp(s) above the switch columns. Then using Eqs. 18-78 and 18-80, T21(s)
¦ − T12(s) ¦ − GP21(s) GP22(s) GP12(s) GP11(s) ‧ ‧ − 0 ‧0   0.0011 ‧ (1.06 s) 1)(0.167 s 1)    0.0212 /  s(0.167 s 1) ‧ −0.0212 /  s(0.167 s 1) ‧ 1 18.14 In this case, RGA analysis is not required. Manipulated and controlled variables are: Controlled variables: F1, P1 and I Manipulated variables: m1, m2, m3 Basically,
coupling could be done based on dynamic estimates, so that time constants and dead times in response should be as low as possible. The level of interface I can be easily controlled with m3 so that any change in the adjustment point is controlled by opening or closing the valve at the bottom of the carafe. The manipulated variable m1
could be used to control the F1 input rate. If F1 is removed from the adjustment point, the valve will respond quickly to control this change. 18-17 The pressure of the P1 carafe is controlled by handling m2. In this way, pressure changes will be dealt with quickly. This control configuration is also used in distillation columns. 18.15 OPTION
A: Controlled variable: Y1, Y2 Manipulated variables: U1, U2 The corresponding fixed-state profit table is  3 −0.5 K ‧ 2   −10 Using in Eq.18-34, we receive -11 = 6 So the RGA is  6 −5 L ‧  −5 6  OPTION B: Controlled variable: Y1, Y2 Manipulated variables: U1, U3 The corresponding fixed-state gain table is  3
1/2 K‧ ¦   −10 4  Using the formula in Eq.18-34, we receive So the RGA is  0.71 0.29 L ‧ 0.29 0.71 OPTION C: Controlled variable: Y1, Y2 18-18 -11 = 0.71 Manipulated variables: U2, U3 The corresponding fixed state gain matrix is  −0.0 5 1/2  K‧ 4   2 Using the formula in Eq.18-34, we have -11 = 0.67 So
the RGA is 0.67 0.33 L ‧   0.33 0.67  from Bristol accounting initial recommendation , controlled and manipulated variables are combined so that the corresponding relative gains are positive and as close as possible to one. Thus, OPTION B leads to better control configuration. 18.16 The process shape appears below q2 q1
MIX T2 = 140 F T1 = 70 F q3 T3 = 110 F Figure S18.16. Process system (a) Fixed state material balance: q1 + q2 = q3 (1) 18-19 Constant state energy balance: q1C(T1-Tref)+q2C(T2-Tref) = q3C(T3-Tref) (2) By replacing (1) at (2) and resolving: q1 = 9/7 gpm q2 = 12/1 27 gpm (b) The fixed-state profit table K: T3   K11   ‧
K  3   21 K12   q1  K 22  ‧q 2  (3) From (1), it appears that K21=K22=1. From (2), q3T3 ‧ q1T1 ο q 2T2 (4) Substitute (1) and rearrangement, T3 ‧ q1 (T1 t2) q1 q 2 (5)  (q q 2 ) − q1  (T1 t2)q 2  �T  K 11 ‧ 3  (T1 ο T2) ‧ 1  ‧ 2 2 ‧ �q1   (q1 ο q 2)  (q1 q q 2    � T  q1 K 12 ‧ ‧
‧ 3  ‧ (T1 ο T2) ‧ − 2  ‧ �q 2  q1  (q1 ο q 2) �  RGA Analysis: -11 ‧ q2 1 1 ‧ K K 1 − 12 21 1 −  − q1  q2 q1 K 22 ‧ q2  , the RGA is , 18-20 ο -12 ‧ 1 − -11 ‧ q1 q2 q1 T3 q2 q2 q 2 q1 q 2 q1 Q1 L ‧ 2nd quarter 2 q1 q2 q 2 q1 Alternate numeric values for numeric values, conditions, T3 L- q3 Coupling: q1 q2 4
7 3 7 7 4 7 T3 - q 2 / q 3 - q 1 1 18.17 a) Dynamic model: Mass balance: a dh ‧ (1 − f) w1 w2 − w3 dt (1) Energy Balance: (Tref = 0) ‧C p A d (hT3 ) ‧ C p (1 − f ) w1T1 C p w2T2 − C p w3T3 − UAc (T3 − Tc ) dt (2) Mixing point: w4 ‧ w3 ‧ fw1 (3) Energy balance mix at the reference point : 18-21 C p w4T4 ‧ C p w3T3 c p fw1T1 (4)
Control valves: b) U ‧ C3 X c (5) w3 ‧ x3 (C1 h − C 2 fw1) (6) Degrees of freedom: Variables: 14 hours, w1, w2, w3, w4, T1, T2, T3, T4, Tc, xc, x3, f, U Equations: 6 degrees of freedom = NV−NE = 8 Determined by environment: 4 (Tc, w1, T1, T2) Manipulated variables: 4 (f, w2, xc, x3) c) Controlled variables: h Guidelines #2 and 5 (i.e.,
G2 and G5) T4 G3 and G5 w4 G3 and G5 w2 (or G4 και G5 (ή G2 και G5) δ) RGA Σε σταθερή κατάσταση, (1) και (2) γίνονται: 0  (1  στ) w1  w2  w3 (7) 0  C p (1  f) w1T1  C p w2T2  C3 w3T3  UAc (T3  Tc ) (8) Αναδιάταξη (8) και υποκατάστατο (5), 18-22 T3  C p (1  f ) w1  C p w2T2  C3 xc AcTc C3 w3  C3
xc Ac (9) Αναδιάταξη (7) w3  (1  f ) w1  w2 (10) Υποκατάστατο (10) σε (9), T3  C p (1 1  στ ) w1  C p w2T2  C 3 x c Ac Tc C 3 (1  f) w1  C 3 w2  C 3 xc Ac (11) Υποκατάστατο (10) , (3) και (11) σε (4), (w3  fw1) T4  w3T3  fw1T1 (12) ή (1  f) w1  w2  fw1 T4  fw1T1   C p (1  f ) w1  C p w2T2  C3
xc AcTc  + (1  f ) w1  w2     C3 (1  f ) w1  C3 w2  C3 xc Ac  Αναδιάταξη, T4  (13)  (1  στ) w1  w2   C p (1  f ) w1  C p w2T2  C3 xc AcTc  fw1T1     W1  W1  W1  W2   C3 (1  f ) w1  C3 w2  C3 xc Ac  (14) Αναδιάταξη (6) , h w3  x3C 2 fw1 x3C1 (15) Υποκατάστατο
(10) σε (15), h (1  f) w1  w2  x3C 2 fw1 x3C1 (16) Ξαναγράψει (14) όπως, T4   E  E8 f  w2  fw1T1  1  w1  w2  w1  w2  w2   18-23  E 2 f  E3 w2  E 4     E5 f  E6 w2  E7  ('17) όπου: E1  w1 E 2  C p w1 E3  C p T2 E 4  C3 X c ATc  C p w1 E 5   C 3 w1 E6  C3 E8 
 w1 E7  C3 X c A  C3 w1 (18) Μπορεί να γράψει (17) ως , T4   fw1T1  w1  w2 F1   E8 E 2 f 2  ( E3 E8  E 2 ) fw2  ( E1 E3  E 4 ) w2  ( E1 E 2  E8 E 4 ) f  E1 E 4 E w  ( w E  E ) w2  w1 E5 f  E5 w2 f  E7 w1 621 6 7
 2 F2 (19) Thus 2 E E f  ( E3 E8  E 2 ) w2  E1 E 2  E8 E 4 �T4 w1T1  K11   B 2 �f w1  w2 [ F2 ] ( F )w E  E w   1 1 52 5 2 F2 Similarly �T4  K 12 �f From (16) x C w  w1 �h  K 21  3 2 1 �f x3C1 �h 1  K 22  �w2 x3 C1 Then 18-24 (20)   1     1  - όπου -
 ε) 1 K12 K 21 1 K11 K 22 Θα είναι δύσκολο να ελεγχθεί ο Τ4, διότι ούτε x3 ούτε f έχει μεγάλη σταθερή επίδραση στον Τ4. 18.18 α) Ισοζύγιο μάζας: F  F1  F2 Fw  F2 w2  0,4 F2 CV: w, F, MV: F1 και F2. Γραμμοποιείται η διαδικασία στο σημείο λειτουργίας, όπως περιγράφεται στο σημείο 18.2.2.  �F  K11    1  �F1
 F2  �F  K12    1  �F2  F1  �w  0,4 F2 K 1 21    0,025   F2  �F1  F2  �w  0,4 F  0,4 F2 K 22    0,025    F2  �F2  F1 (β) RGA: -11  F1 F1  F2 1 1    2 K 0,4 F2 / F F1  F2 F 1  12 21 1  2 K11 K 22  0.4F  0.4 F2  / F Έτσι, η συστοιχία RGA είναι 18-25  F 
F2  F   F2 F F F2  F   F − F2  F  c) -11 ‧ 1 1 ‧ ‧ 0.5 K12 K 21 1 ο 0.025 / 0 .025 1− K11 K 22 0.5 0.5 Thus, the RGA array becomes:  , in this case, either the coupling is 0.5 0.5 recommended. 18.19 (a) (i) Static estimates: Coupling according to RGA data closest to +1: H1 – Q3, pH1-Q1, H2-Q4, pH2 – Q6
ii) Dynamic issues: Coupling results in the shortest time constants for tank 1. It is also dynamically better for tank 2 because it avoids the large ratio of 0.8. (iii) Natural estimates The proposed coupling makes sense because the controlled variables for each tank are combined with the incision flows for that one tank. Because the pH is
more important than the level, we could use the coupling, H1 – Q1 / pH1-Q3 , for the first tank to provide better pH control due to the shorter time delay (0.5 vs. 1.0 minutes). b) The new profit matrix for problem 2 to 2 is 18-26  0.42 0.41 K  −0.32 0.32 From Eq. 18-34, -11 ‧ 1 ‧ 0.506 (0.41)(--0.32) 1• (0.42)(0.32) 0.1 506
0.494 L-  0.494 0.506 RGA coupling: H2 – Q4 / pH2-Q6. The pairing also avoids the large delay of 0.8 min. 18.20 Since level is tightly controlled, there is a no accumulation, and a material balance yields: Overall: wF – E wS – wP � 0 Solute: wFxF - wPxP � 0 (1) (2) Controlled variable: x P , wF Manipulated variables: wP ,
ws From (1): wF = wS E + wP From (2): xP  xF x wF  F ( ws E  wP ) wP wP Using deviation variables: 18-27 (3) wF  ws E  wP Linearizing (3): xP  xP  �x P �wP ( wP )  wP , ws   x F Ews x P   2  wP �x P �ws ( ws ) wP , ws  x E  wP   F  ws  w    P   (5) Then the
steady-state gain matrix is w P x P   x F Ew s   w 2 P  w F ws      xF E  ‧ ‧  ‧ wp  1 E Using the formula in Eq.18-34, we will acquire Ews 1 ‧ - 22 wp Ews ο wp 1 ο Ews wp -12 ‧ - 21 ‧ 1 − -11 ‧ Ews ‧ ο ο wp -11 = So, the RGA is  Ews ‧ Ew ο w p ‧ s ‧ L ‧ ο wP ‧ Ews ο wp  wp  Ews ο
wp     Ews  Ews ο wp  so, if Ews  wP , the coupling should be x P - w P / w F - ws So if the Ews ο wp , the coupling should be is x P - ws / w F - w P 18-28 18.21 a) The corresponding fixed-state gain the table is  −0 ,04 −0.0005 K ‧ −0.02   0.22 Using the formula in Eq. 18-34 , we have
received So the RGA is -11 = 1.16  1.16 −0.16 L ‧  −0.16 1.16  b) Matching for positive relative gains requires y1-u1 and y2-u2. 18.22 For the higher dimension process (n&gt;2) the RGA can be calculated from the expression -ij = Kij Hij where Hij is the element (i,j) of H = (K-1)T Using MATLAB,  62.23 −122.17 58.02  K
‧‧ −84.47 170.83 −83.43 ‧ 1.95 −14.85 13.09  -1  62.2 3 −84.47 1.95  H ‧ ‧ ‧ ‧122,17 170,83 −14,85 ‧ 58,02 −83,4 3 13.09  Thus, the RGA is 18-29 1.89   210.34 −211.18 ‧ L ‧ ‧390.95 406.. 58 −14.642  ‧ 181.60 −194.39 13.80  This RGA analysis shows the control difficulties for this
process due to the interactions of the control loop. For example, if the mappings are 1-3, 2-2, 3-1, the third loop will experience difficulties in closed loop operation. But other options are no better. SVA Analysis: Determinant of K = K = 0.0034 The status number = CN = 1845 Since the determinant is small, the required adjustments to you
will be very large, resulting in excessive control actions. In addition, this example shows that Table K is poorly adjusted and very sensitive to small fluctuations in its elements. 18.23 Application of SVA analysis: Determinant of K = K = -6.76 Status number = CN = 542.93 Large status number indicates poor preparation. Therefore, this
process will require large changes to the handled variables in order to affect the controlled variables. Some outputs or inputs should be eliminated to achieve better control and singular value decomposition (SVD) can be used to select the variables to eliminate. Using the MATLAB SVD command, the unique values in Table K are: 
21.3682   6.9480  =  1.1576  0.0394  18-30 Note that 3/4 &gt; 10, then the last unique price can be neglected. If we eliminate one input and one output variable, there are sixteen possible pairings that appear in table S18.23, along with the CN term number. Pairing number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Controlled variables y1,y2,y3 y1,y2,y3 y1,y2,y3 y1,y2,y3 y1,y2,y4 y1,y2,y4 y1,y2,y4 y1,y2,y4 y1,y3,y4 y1,y3,y4 y1,y3,y4 y1,y3,y4 y2,y3,y4 y2,y3,y4 y2,y3,y4 y2,y3,y4 Manipulated variables u1,u2,u3 u1,u2,u4 u1,u3,u4 u2,u3,u4 u1,u2,u3 u1,u2,u4 u1,u3,u4 u2,u3,u4 u1,u2,u3 u1,u2,u4 u1,u3,u4 u2,u3,u4 u1,u2,u3 u1,u2,u4 u1,u3,u4 u2,u3,u4
CN 114.29 51.31 398.79 315.29 42.46 30.27 393.20 317.15 21.21 16.14 3897.2 693.25 24.28 20.62 1332.7 868.34 Table S18.23. CN for different 3x3 mappings. Based on the minimum status number, it is recommended to pair 10 (y1-u1,y3-u2,y4-u4). The RGA for the reduced variable set is  1.654 −0.880 0.226  L ‧ ‧ ‧ ‧0.785
3.742 −1.957  ‧ 0 . 1312 −1.8615 2.7304  18-31 18.24 1-2/2-1 the controller coupling has a greater stability area compared to 1-1/2-2. RGA: -11 ‧ 1 1 ‧ ‧ 2.28 K12 K 21 1.5 ‧ 1.5 1 − 1 − 2 ‧ 2 K11 K 22  2.28 − 1.28 ‧ ‧ 1.28 2.28    the coupling of the controller must be 1-1/2-2 to avoid negative values. The
stability analysis is based on results and uses the numeric range of the controller to receive a stable closed loop response. RGA is based on static gain process (Kij) analysis, which shows only the loop opening steady state behavior. For this problem, 1-2/2-1 matching has a larger stability area, which means choice of Kc1 and Kc2 has a
larger margin with guaranteed stability. However, around the stable state, the negative RGA indicates a combat control loop, which may be vulnerable to process noise. Thus, 1-2/2-1 matching should be avoided in this case. 18-32 Chapter 19 19.1 From the definition of xc, 0 ‧ xc ‧ 1 f(x) = 5.3 x e (-3.6x +2.7) Leave three starting points
at [0.1] to be 0.25, 0.5 and 0.75. Calculate x4 using Eq. 198,. x1 0.25 f1 8.02 x2 0.5 f2 6.52 x3 0.75 f3 3.98 x4 0.0167 For the next iteration, select x4, and x1 and x2 from F1 and F2 is the largest between f1, F2, F3. Thus, successive iterations are x1 0.25 0.25 0.25 f1 8.02 8.02 8.02 8.02 8.02 x2 0.0.. 5 0.5 0.334 0.271 xopt = 0.2799 F2
6.52 6.52 7.92 8.06 x3 0.017 0.334 0.271 0.280 F 3 1.24 7.92 8.06 8.06 x4 0.334 0.271 0.280 does not need 7 function ratings 19.2 As shown in the plan, there is both a minimum and a maximum value of the air/fuel ratio so that the thermal efficiency is non-zero. If the ratio is too low, there will not be sufficient air to maintain combustion.
On the other hand, problems in combustion will occur when too much air is used. Maximum thermal efficiency is achieved when the air/fuel ratio is stoic. If the amount of air is excessive, relatively more heat will be absorbed by the air (mainly nitrogen). However, if the air is not sufficient to maintain total combustion, thermal efficiency will
also decrease. Process Dynamics and Control Solution Manual, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp and Francis J. Doyle III 19-1 19.3 Using Excel-Solver, this optimization problem is quickly resolved. The selected starting point is (1.1): Initial values Final values X1 X2 1 1 0.776344
0.669679 max Y= 0.55419 Restrictions 0 ‧ X1 ‧ 2 0 ‧ X2 ‧2 Table S19.3. Excel solution Therefore, the optimal point is ( X1*, X2* ) =(0.776, 0.700) and the maximum value of Y is Ymax = 0.554 19.4 Let N be the number of lots / year. Then np ‧ 300,000 Since the goal is to minimize the cost of annual production, only the required
amount should be produced annually and not more. That is, NP = 300,000 a) (1) Minimize the total annual cost,  $  $  lot  0.4  hour  min TC = 400,000  +2P  50  N  lot  ‧ lot  ‧ hours  ‧ years    $  + 8 000 P0.7 ‧ ‧  ‧ years  The replacement of N by (1) minimum TC = 400,000 + 3x107 P–0.6 +
800 P0.7 19-2 b) There are three limitations in P i) ii) P‧0 N is integer. That is, (300,000/P) = 0, 1, 2,... (iii) The total production time is 320 x 24 hours/year  lot   hr  (2 P0.4 + 14) 14)  ‧ N ‧  ‧ lot ‧ 7680 years old  ‧  Replacing the N by (1) and simplifying 6 ‧ 105P-0.6 + 4.2 ‧ 106P-1 ‧ 7680 c) d (TC) ‧ 0 ‧107 (--
0.6) P −1.6 ο 800(0.7) P −0.3 dP 1/1.3 P opt  3 .107 (--0.6)    −800(0.7)  lot 2931 lb d 2 (TC) ‧ 3 ‧107 (--0.6)--(1.6) P −2.6 μ 800(0.7)(−0.) 3) P −1.3 2 dP 2 d (TC) ‧ 2.26 ‧10--2  0 therefore minimum 2 dP P ‧ Popt Nopt = 300,000/Popt = 102.35 is not integer. Ως εκ τούτου, ελέγξτε για Nopt = 102 και Nopt = 103 Για Nopt =
102, Popt = 2941.2, και TC = 863207 Για Nopt = 103, Popt = 2912.6, και TC = 863209 Ως εκ τούτου βέλτιστη είναι 102 παρτίδες των 2941,2 lb/ παρτίδας Ο χρονικός περιορισμός είναι 6 �105 P--0,6  4,2 �106 P--1  6405,8  7680 , ικανοποιημένοι 19-3 19,5 Ας x1 είναι ο ημερήσιος ρυθμός τροφοδοσίας του αργού No.1 σε bbl/ημέρα x2
είναι το ημερήσιο ποσοστό τροφοδοσίας του αργού Νο.2 σε bbl /day Στόχος είναι να μεγιστοποιηθεί το κέρδος max P = 3,00 x1 + 2,0 x2 Υπόκεινται σε περιορισμούς βενζίνης: 0,70 x1 + 0,41 x2  6000 κηροζίνη: 0,06 x1 + 0,09 x2  2400 μαζούτ: 0,24 x1 + 0,50 x2  12.000 Με τη χρήση του Excel-Solver , Initial values Final values max P
= x1 1 0 x2 1 14634.15 29268.3 Restrictions 0.70 x1 + 0.31 x2 y 0.06 x1 + 0.09 x2 0.24 x1 + 0.60 x2 6000 1317 7317 Table S19.5. Excel Solution Therefore, the optimal point is (0, 14634.15) Slow No.1 = 0 bbl/day Slow No.2 = 14634.15 bbl/day 19-4 19.6 The objective function is to maximize revenue, max R = -40x1 +50x3 +70x4 +40x5
–2x1-2x2 (1) *Balance in column 2 x2 = x4 + x5 (2) * From column 1, 1.0 x1 = x2 ‧ 1.667( x4 x5 ) 0.60 0.4 x 3 = x2 ‧ 0.667( x4 ) x5 ) 0.60 (3) (4) Inequality restrictions are x4 ‧ 200 x4 ‧ 400 x1 ‧ 2000 x4 ‧ 0 x5 ‧ 0 (5) (6) (7) (8) The limited operating range for column 2 imposes additional inequality restrictions. The average solvent
is 50 to 70% of the bottom. i.e. 0,5 ‧ x4 ‧ 0,7 or x2 0,5 ‧ x4 ‧ 0,7 x4 ‧ x5 Rewrite in linear form, 0.5 x2 ≤ x4 ≤ 0.7 or 0.5 (x4 + x5) ≤ x4 ≤ 0.7 (x4 + x5) Simplification, x4 –x5 ‧ 0 0.3 x4 –0.7x5 ‧ 0 (9) (10) No additional restriction is required for heavy solvent. The fact that the heavy solvent will be 30 to 50% of the bottom is ensured by
limiting the average solvent and the total balance in column 2. 19-5 Using Excel-Solver, Initial Values Final values max R = Limitations x2 - x4 - x5 x1 - 1.667x2 x3 - 0.667x2 x4 x1 - 1.667x2 x4 - x5 0.3x4 - 0.7x5 x1 1 1333.6 x 2 1 800 x3 1 533.6 x4 1 400 x5 1 400 13068.8 0 7.467E-10 -1.402E-10 400 400 1333.6 0 -160 Table S19.6. Excel
solution So the optimal point is x1 =1333.6, x2 =800; x3=533.6, x4 = 400 and x5 = 400. Replacing (5), the maximum revenue is $13,068/day and the percentage of output flows in column 2 is 50 % for each stream. 19.7 The aim is to minimise the sum of squares of errors for the material balance, i.e., min E = + 11.3 – 92.1)2 + (wA (wA
(wA ) –94.2)2 + (wA + 11.6 –93.6)2 Subject to wA ‧ 0 Resolve in detail, dE ‧ 0 ‧ 2 (wA + 11.3 – 92.1) + 2 (wA +10.9 –94.2) dwA +2(wA + 11.6 –93.6) Resolve for wA... wA opt = 82.0 Kg/hr 19-6 Check for minimum, d 2E ‧ 2 ο 2 ο 6  0 , therefore minimum 2 dwA 19.8 The reactor equations are: dx1 ‧ k1 x1 (1) dt dx2 ‧ k1 x1 − k2
x2 (2) dt When k1 ‧ 1.335*1010 e—75000/ ο8.31*T ‧; k2 ‧ 1.149*1017 e−125000/ ο8.31*T ‧ Using MATLAB, this differential equation system can be solved using the command ode45. In addition, we need to apply the fminsearch ino command in order to optimize the temperature. In this way, the results are: Top ‧ 360.92 K ?
x2,max ‧ 0,343 MATLAB code: %% Exercise 19,8 function y = Exercise_19_8(T) k10 = 1,335*10^10; % min^(-1) k20 = 1.149*10^17; % min^(-1) E1 = 75000· % J/(g.mol) E2 = 125000· % J/(g.mol) R = 8,31· % J/(g.mol.K) x10 = 0,7· % mol/L x20 = 0· % mol/L k1 =k10*exp(-E1/(R*T))· k2 = k20*exp(-E2/(R*T))· time = [0.6]; % of the time
period; initial_val = [x10, x20]; options = odeon('RelTol',1e-4,'AbsTol',[1e-4 1e-4]); [~,X] = odeon45(@reactor, time, initial_val, options). y = -X(end,2); % Due to the investigation, the opposite function should be dx = reactor(t,x) dx = zeros(2,1); % Column carrier Dx(1) = -k1*x(1); dx(2) = k1*x(1)-k2*x(2)· end %% Exercise 22.10 main clear
all;clc; close it all; T_range = [200, 500]· T = fminsearch(@Exercise_19_8, 200)· x2_max =-Exercise_19_8(T)· 19-7 19.9 By using Excel-Solver: Initial values Final values 1 2.907801325 0 1.992609 Time 0 1 2 3 4 5 6 7 8 9 10 11 Equation 0 0.065457105 0.200864506 0.350748358 0.489635202 0.607853765 0.703626108 0.778766524
0.836422873 0.879953971 0.912423493 0.936416639 Data 0 0.0583 0.2167 0.36 0.488 0.6 0.692 0.772 0.833 0.888 0.925 0.942 SUM= Square Error 0 5.12241E-05 0.000250763 8.55929E-05 2.67388E-06 6.16816E-05 0.000135166 4.57858E-05 1.17161E-05 6.47386E-05 0.000158169 3.11739E-05 0.000898685 Hence the optimal
values are  1  2.9; 2  1.99 .. 19.10 Let x1's gallons of suds mixed x2 are gallons of premium mixed x3 are gallons of water mixed Aim is to minimize the cost min C = 0.3x1 + 0.40x2 (1) Subject to x1 + x2 + x3 = 10,000 (2 ) 0.03 x1 + 0 .060 x2 = 0.050 ‧ 10,000 19-8 (3) x1 ‧ 2000 (4) x1 ‧ 9000 (5) x2 ‧ 0 (6) x3 ‧ 0 (7) The
problem given by Eqs. 1, 2, 3, 4, 5, 6, and 7 is optimized using excel-Solver, initial values Final values Objective mode x1 1 20 00 3533.33333 x2 0 7333.333 x3 0 666.666667 Restrictions x1+x2+x3 0.03x1+0.06x2 x1 x1 x2 x3 10000 50 0 00 2000 2000 7333.333333 666.666667 = = &gt; = =10000 500 2000 9000 0 0 We achieve: suds =
2000 gallons; premium = 7333.3 gallons; water = 666.7 gallons, with a minimum cost of $3533.3. 19.11 Let xA be bbl / of A produced xB to bbl / day of B produced Objective is to maximize the gain max P = 10xA + 14xB (1) Subject to raw material 120xA+ 100xB ‧ 9,000 (2) Warehouse space restriction: 0.5 xA + 0.5 xB ‧ 40 (3)
Production time limit: (1/20)xA + (1/10)xB ‧ 7 (4) 19-19-19-19-19 9 Initial values Final values max P = xA 1 20 xB 1 60 1040 Restrictions 120xA+ 100xB 0.5 xA + 0.5 xB (1/20)xA + (1/10)xB 8400 40 7 Table S19.11. Excel solution So the optimal point is xA = 20 and xB = 60 The maximum profit = $1040/day 19.12 PID controller
parameters are usually obtained using either process model, process data or computer simulation. These parameters are kept constant in many cases, but when operating conditions vary, supervisory control could include optimizing these configuration parameters. For example, using process data, Kc , I and D can be calculated
automatically to maximize profits. A comprehensive analysis of the procedure is required in order to achieve this type of optimal control. Supervisory and regulatory control is complementary. Of course, supervisory control can be used to adjust the parameters of either an analog or digital controller, but feedback control is required to keep
the controlled variable at or near the specified point. 19.13 Assuming steady state behavior, the optimization problem is, max f = D e Subject to 0.063 c –D e = 0 0.9 s e – 0.9 s c – 0.7 c – D c = 0 19-10 (1) (2) -0.9 s e + 0.9 s c + 10D – D s = 0 D, e, s, c � 0 (3) where f = f(D, e, c, s) Excel-Solver is used to solve this problem, c D e s 1 1 1 1
0.479031 0.045063 0.669707 2.079784 Initial values Final values max f = 0.030179 Constraints 0.063 c –D e 0.9 s e – 0.9 s c – 0.7 c – Dc -0.9 s e + 0.9 s c + 10D – Ds 2.08E-09 -3.1E-07 2.88E-07 Table S19.13. Excel solution Thus, the optimal value of D is equal to 0.045 h-1 19.14 Material balance: Total : FA + FB = F Component B: FB
CB + VK1CA – VK2CB = F CB Component A: FA CAF + VK2CB + VK1CA = FCA So the optimization problem is: max (150 + FB) CB Subject: 0.3 FB + 400CA − 300CB = (150 + FB)CB 45 + 300 CB – 400 CA = (150 + FB) CA FB ‧ 200 CA, CB, FB ‧ 0 19-11 Using Excel-Solver, the best values are FB = 200 l/hr CA = 0.129 mol A/l CB
= 0.171 mol B/l 19.15 Material balance: Total : FA + FB = F Component B: FB CB + VK1CA – VK2CB = F CB Component A: FA CAF + VK2CB – VK1CA = FCA So the optimization problem is : max (150 + FB) CB Subject to : 0.3 FB + 3 ο 106e(-5000/T)CA V − 6 ‧ 106e(-5500/T)CB V = (150 + FB)CB 45 + 6 ‧ 106 (-5500/T)CB V – 3 ‧
106e(-5000/T) CA V = (150 + FB) CA FB ‧ 200 300 ‧ T ‧ 500 CA, CB, FB ‧ 0 Using Excel-Solver, the best values are FB = 200 l/hr CA = 0.104 mola/l CB = 0.177 mol B/l T = 311.3 K 19-y 12 Chapter 20 20.1 (a) The unit step response is  ο  1 ο 3e −2 s 45 20 ο −2 s ο 1 Y ( s ) = G p (s)U ( s ) =    = 3e  −  s 15s + 1 10 s + 1  
(15s + 1)(10 s + 1)   s  Ως εκ τούτου , y (t) = 3S (t − 2) 2) + 2e − (t − 2)/10 − 3e − (t − 2)/15 Si = y (iDt ) = y (i) = b) {0, 0, 0.0095, 0.036, 0.076, 0.13...} Evaluate the expression for y(t) in part a) y(t) = 0.99 (3) ≈ 2.97 in t = 87. So, N = 87, for 99% full answer. 20.2 (a) Note that G (s) = Gv (s)G p (s) Gm (s ) . From Figure 12.2, ym(s) 4(1 −
3s) (s) = G= P(s) (15s + 1)(5s + 1) (1) for unit step change, P ( s ) = 1 / s , and (1) becomes: Ym (s ) = 1 4(1 − 3s ) s (15s + 1)(5s + 1) © Solution Manual for Process Dynamics and Control, 4th Edition Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and Francis J. Doyle III 20 - 1 Partial Fraction Extension:
A B C 1 4(1 − 3s ) Ym (s ) = + + + s (15s + 1) (5s + 1) s (15s + 1) (5 1) (2) where: = A B= 4(1 − 3s ) = 4 (15s + 1)(5s + 1) s =0 4(1 − 3s ) = −108 s (5s + 1) s = − − 1 15 = C 4(1 − 3s ) = 16 s (15s + 1) s = − 1 5 Substitute in (2) and take the reverse Laplace Transformation : 36 16 ym (t) = 4 − e − t /15 + e − t /5 5 5 (3) b) The new constant
state value is obtained from (3) to be ym(∞)=4. For t = t99, ym(t)=0.99ym(∞) = 3.96. Substitute in (3) 36 16 3.96 = 4 − e − t99 /15 + e − t99 /5 5 5 (4) Resolve (4) for t99 gives t99 ≈ 77.9 minutes So we determine that Dt = 77.9/30 ≈ 3 minutes Table S20.22. Συντελεστές απόκρισης βημάτων k 2 3 4 5 6 7 8 9 10 t (min) 3 6 9 12 15 18 21 24
27 30 Si -0,139 0,138 0,578 1.055 1.511 1.919 2.27 2 2.573 2.824 3.034 k 11 12 13 14 15 16 17 18 19 20 t (min) 33 36 39 42 45 48 51 54 57 60 20 - 2 Si 3.207 3.3.3 49 3.467 3.563 3.642 3.707 3.760 3.803 3.839 3.868 k 21 22 23 24 25 26 27 28 29 30 t (min) 63 66 69 77 7 5 78 81 84 87 90 Si 3.892 3.912 3.928 3.941 3.951 3.960 3.967
3.973 3.978 3.982 20.3 Από τον ορισμό της μήτρας S, που δίνεται σε Eq. 20-28 , for P=5 , M=1, with Si taken from exercise 20.1, ‧ S1 ο 0 ο  S ο  0.01811  2 s =  S 3 ο = 0.06572 ο    S 4 ο  0.1344  from  0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from 0.2174 from
0.2174 From 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174
from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0,2174 from 0, From 0.217420-65: Kc = (STS)-1ST Kc = [0 0.2589 0.9395 1.9206 3.1076] = Kc1T Because Kc1T is defined as the first row of Kc , Using the given analytical result, 1 Kc1T = 5 [S1 S 2 S 3 S 4 4 S 5 ] 2 ‧ (S i) i =1 Kc1T = 1 [0 0.01811 0.06572 0.1344 0.2 174] 0.06995
Kc1T = [0 0.2589 0.9395 1.9206 3.1076] which is the same as the answer received above using (20-65). 20.4 The step response is taken from the step response of the analytical unit as in example 20.1. The Kc feedback table is obtained using Eq. 20-65 as in example 20.5. These results are not mentioned here for the sake of brevity.
The closed loop response for point changes and disturbance is shown below for each case. The MATLAB MPC toolbox was used for the simulations. 20 - 3 i) For this model horizon, the step response is over 99% complete as in example 20.5. therefore, the model is good. Teh Teh and the disturbance responses shown below are non-
oscillating and have long break-up times Outputs 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 Time Manipulated Variables 2 1.5 u 1 0.5 0 0 10 20 30 40 50 60 Time s20.4a. Auditor (i); changing the adjustment point. Outputs 0.8 0.6 y 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 100 70 2 80 90 100 Time Manipulated Variables
0 -0.5 u -1 -1.5 0 10 20 30 40 50 60 Chronograph S20.4b. Auditor (i); change of disturbance. 20 - 4 ii) The answer shown below shows the same excess, shorter precipitation time and unwanted ringing in u compared to part i). The disturbance response indicates a lower peak value, a lack of oscillations, and a faster adjustment of the
manipulated input. Outputs 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 80 80 9 0 100 Time Manipulated Variables 15 10 5 u 0 -5 -10 0 10 20 30 40 50 60 Time Shape S20.4c. Auditor (ii); changing the adjustment point. Outputs 0.4 0.3 y 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 70 28 0 90 100 Time Manipulated Variables 0 -0.5 u
-1 -1.5 0 10 20 30 40 50 60 Time s20.4d. Auditor (ii); change of disturbance. 20 - 5 (iii) The responses to the adjustment point and the disturbances presented below show the same trends as Part i). Outputs 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 80 9 0 100 Time Manipulated Variables 10 5 u 0 -5 -10 0 10 20 30 40 50 60 Year
Figure S20.4e. Auditor (iii); changing the adjustment point. Outputs 0.4 0.3 y 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 70 28 0 90 100 Time-manipulated Variables 0 -0.5 u -1 -1.5 0 10 20 30 40 50 60 Time s20.4f. Auditor (iii); change of disturbance. 20 - 6 (iv) The responses of specified points and loads presented below show the same
trends as in Parts (i) and (ii). Compared to part (iii), this controller has a longer penalty for manipulated input and therefore leads to a smaller and less oscillating entry effort at the expense of greater excess and settlement time for the controlled variable. Outputs 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 Time
manipulated variables 4 3 2 u 1 0 -1 0 10 20 30 40 50 60 Year Old Figure S20.4g. Auditor (iv); changing the adjustment point. Outputs 0.5 0.4 0.3 y 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 100 100 270 80 90 100 Time-manipulated Variables 0 -0.5 u -1 -1.5 0 10 20 30 40 50 60 Year Figure S20.4h. Auditor (iv); change of disturbance.
20 - 7 20.5 There are many sets of M, P, and R values that meet the given limitation for a unit load change. One such set is M=3, P=10, R=0.01 as shown in exercise 20.4(iii). Another set is M=3, P=10, R=0.1 as shown in exercise 20.4(iv). A third set of values is M=1, P=5, R=0 as shown in the exercise 20.6 (Using the MATLAB model
prediction toolbox) As shown below, controller (a) provides a better disturbance response with less maximum output deviation and less control effort. However, the controller (a) is poorer for a change of specified point, point, ringing at the manipulated entrance. Outputs 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 80 80 9 0 100 Time
Manipulated Variables 15 10 5 u 0 -5 -10 0 10 20 30 40 50 60 Time s20.6a. Auditor (a); changing the adjustment point. 20 - 8 Exits 1.5 1 y 0.5 0 0 10 20 30 40 50 60 70 80 90 100 70 8 8 0 90 100 Time Manipulated Variables 15 10 5 u 0 -5 -10 0 10 20 30 40 50 60 Chronograph S20.6b. Auditor (a); change of disturbance. Outputs 0.4 0.3 y
0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 70 2 80 90 100 Time Manipulated Variables 0 -0.5 u -1 -1.5 0 10 20 30 40 50 60 Time Shape S20.6c. Auditor (b); changing the adjustment point. 20 - 9 Exits 0.4 0.3 y 0.2 0.1 0 0 10 20 40 30 60 50 70 80 90 10070 80 90 100 Time Manipulated Variables 0 -0.5 u -1 -1.5 0 10 20 40 30 60 50 Year
Figure S20.6d. Auditor (b); change of disturbance. 20.7 The non-crushed MPC control law has controller gain matrix: Kc = (STQS+R)-1STQ for this exercise, the parameter values are: m = r = 1 (SISO), Q=I, R=1 and M=1 So (20-65) becomes Kc = (STQS+R)-1STQ Which reduces to a series vector: Kc = [S1 S 2 S 3 ... S P ] P ‧S i =1 20
- 10 2 i +1 20.8 (Use MATLAB Model Prognostic Control Toolbox) a) M=5 vs. M=2 XD XB 1.5 1 y(t) 0.5 0 -0.5 0 20 40 4 060 80 100 120 140 Time (min) 0.2 R S 0.1 u(t) 0 -0.1 -0.2 0 20 40 60 80 100 120 140 Time (min) Figure S20.8a1. Simulations for P=10, M=5 and R=0.1I. 2 XD XB 1.5 1 y(t) 0.5 0 -0.5 0 20 40 60 80 100 120 140 Time
(min) 0.. 2 R S 0.1 u(t) 0 -0.1 -0.2 0 20 40 60 80 100 120 Time (min) Figure S20.8a2. Simulations for P=10, M=2 and R=0.1I. 20 - 11 140 b) R=0.1I .vs R=I 2 XD XB 1.5 1 y(t) 0.5 0 -0.5 0 20 40 60 80 100 120 140 Time (min) 0.2 R S 0.1 u(t) 0 -0.1 -0.2 0 20 40 60 80 100 120 140 Time (min) Figure S20.8b1. Simulations for P=10, M=5 and
R=0.1I. 2 XD XB 1.5 1 y(t) 0.5 0 -0.5 0 20 40 60 80 100 120 140 Time (min) 0.2 R S 0.. 1 u(t) 0 -0.1 -0.2 0 20 40 60 100 120 140 Time (min) Figure S20.8b2. Simulations for P=10, M=5 and R=I. Notice that the higher control horizon M and the lower input weighting factor R, the more control effort is required. 20 - 12 20.9 The GP's open
loop unit step response(s) is  e −6 s 1 -  10 - 1 − ( t − 6 ) / 10  = L-1  e −6 s  − y (t ) = L-1    = S (t − 6) 1 − e  s 10 s + 1     10 s + 1 s  [ ] When testing and error, y(34) &lt; 0.95, y(36) &gt; 0.95. Therefore NDt =36 or N = 18. The coefficients {S i } are taken from the expression for y(t) and the forecast controller is obtained in
accordance with the procedure set out in example 20.5. Closed loop responses for a unit configuration point change are shown below for the three controller design configuration sets. 20.10 Note: These results were created using the PCM oven unit, option MPC c) Change CO2 adjustment point adjustment point responses in Figs.
S20.10a and . S20.10b demonstrate that the increase in the elements of matrix R makes the controller conservative and leads to more sluggish reactions. 20 - 13 Figure S20.10a. Change in CO2 adjustment point from 0.922 to 1.0143 for P=20, M=1 and Q = diag [0.1, 1]. The two series represent R = diag [0.1, 0.1] and R = diag [0.5, 0.5].
20 - 14 d) Step disturbance in hydrocarbon flow rate Disturbance responses in Figure Fig. S20.10b is sluggish after an initial period of oscillation, and both MVs change very slowly. When the diagonal elements of matrix R increase to 0.5, the disturbance reactions are even slower. Figure S20.10b. The two series represent R = diag [0.1,
0.1] and R = diag [0.5, 0.5]. 20.11 Repeat 20.10 for R [0.1 0.1], Q = [0.1 1] and (a) M=1 and (b) M=4 First we evaluate the controller's response to a gradual change in the oxygen concentration adjustment point from 0.922 to 1.0143. 20 - 15 Figure S20.11a. Gradual change in the oxygen concentration adjustment point for P=20, Q = diag
[0.1, 1], R = diag [0.1, 0.1] and M=1 or M=4. Then we will try a step change in the hydrocarbon flow rate from 0.035m3/min to 0.038m3/min. 20 - 16 Figure S20.11b. Gradual change in fuel gas flow rate for P=20, Q = diag [0.1, 1], R = diag [0.1, 0.1] and M=1 or M=4. 20.12 Note: These results were created by using the PCM distillation
column section, MPC option For parts a) and (b), the step response for the models was created in the workspace. The PCM distillation column unit then opened. The controller parameters were entered into the MPC controller as defined in parts (a) and (b). Subsequently, the tests described in parts (c)-e) were carried out for each
controller. The results are presented below. c) Change step at the xD adjustment point from 0.85 to 0.8 20 - 17 Figure S20.12a. Change step at setting point xD from 0.85 to 0.8 for Q=diag [0.1 0.1] and Q=diag [0.5 0.5]. 20 - 18 (d) Change step at setting point xB from 0.15 to 0.20 Figure S20.12b. Change step at setting point xB from 0.15
to 0.2 for Q=diag [0.1 0.1] and Q=diag [0.5 0.5]. 20 - 19 e) Change step in column feed flow rate from 0.025 to 0.03 Figure S20.12a. Change step in column feed flow rate from 0.025 to 0.03 for Q=diag [0.1 0.1] and Q=diag [0.5 0.5]. 20.13 We repeat problem 20.12, but this time we are looking at the case where R = [0.1 1], Q = [0.1 0.1]
and M=1 or M=5. The same three tests shall be repeated from 20.12. c) Gradual change of xD from 0.85 to 0.8 20 - 20 Figure S20.13a. Change step at xD setting point from 0.85 to 0.8 for M=1 and M=5. 20 - 21 (d) Change step at the xB adjustment point from 0.15 to 0.20 Figure S20.13b. Change step at the xB adjustment point from 0.15
to 0.2 for M=1 and M=5. 20 - 22 e) Step change in column feed flow rate from 0.025 to 0.03 Figure S20.13c. Change step in flow rate from 0.025 to 0.03 for M=1 and M=5. 20 - 23 Chapter 21 © 21.1 No. It is desirable that the minimum value of the output signal be greater than zero in order to easily detect the damage to the instrument.
Thus, for a conventional electronic instrument, an output signal mA indicates that a malfunction has occurred, such as a power failure. If the instrument range was 0-20 mA, instead of 4-20 mA, the output signal could be zero during normal operation. Thus, organ failures would be more difficult to detect. 21.2 The difference between
measurement 6.0 and the sample condition, 5.75, is 0.25 pH units. Because the standard deviation is s = 0.05 pH units, this measurement is five standard deviations from the average. If the pH measurement is distributed normally (a hypothesis), then fig. 21.7 indicates that the probability of the measurement being less than or equal to
five standard deviations from the average is 0.99999943. Thus, the probability of p of a measurement being greater than five standard deviations from the average is only p =1 - 0.99999943 = 5.7x10-7. Therefore, the probability of a measurement being greater than five standard deviations from the average is half of this value, p/2 or
2.85x10-7. A very small value! 21.3 Make the usual SPC assumption that temperature measurement is distributed normally. According to Eq. 21-6, the probability that the measurement is within three standard deviations from the average is 0.9973 Thus, the probability that a measurement is beyond these limits during routine operation is p
= 1- 0.9973 = 0.0027. From Eq. 21-19, the average ARL run length among false positives is, 1 ARL ‧ � 366 samples p 21-1 [Press here] [Press here] [Press here] [Press here] So, for a sampling period of one minute, on average we would expect a false positive every 366 minutes. Thus, for a period of eight hours, the expected number
of false alarms N is given by: N■ (8 h)(60samples / h) ‧ 1.31 � 1 false alarm 366 samples/false alarm 21.4 Let's indicate the desired probability. (a) p = (0.95)3 = 0.857 b) p = (0.05)3 = 1.25 x 10-4 c) There is a much better approach. The median of the three measurements is much less sensitive to sensor failure. Thus, it should be used
instead of average. 21.5 A recording of the data in Figure S21.5 does not indicate abnormal behavior. 0.85 0.84 0.83 0.82 Impurity (%) 0.81 0.8 0.79 0.78 0 2 4 6 8 10 Sample number Figure S21.5. Impurity data for exercise 21.5. The following statistics and graph limits can be calculated from the data: UCL = T + 3 = 0.8 + 3(0.021) =
0.863 % LCL = T - 3  = 0.8 - 3(0.021) = 0.737 % 21-2 Figure S21.5 shows that all eight data points are within the limits of the Shewhart chart. A standard CUSUM chart (k=0.5, h=5) also shows no chart violations, as the CUSUM chart limit is h = 5 ‧‧, and neither C+ or C- calculated by Eq. 21-21 and 21-22 exceed this limit.
CUSUM calculations are shown in table S21.5. Table S21.5. CUSUM calculations for exercise 21.5 Impurity (%) Deviation from target 1 0.812 0.012 0.0015 0 2 0.791 -0.009 0.0015 0 3 0.8 41 0 0.041 0.0320 0 4 0.814 0.014 0.0355 0 5 0.799 -0.001 -0.001 0 6 0.833 0.033 0.0580 0 7 0.815 0.015 0.0625 0 8 8 8 190.807 0.007 0.0625 0
CUSUM + CUSUM Day - 21.6 (a) The Shewhart diagram for rain data is shown in Fig. S21.6a. The following data were calculated from the data for 1870-1919: s = 7.74 in. x =18.6 in. UCL = 41.9 inches. LCL = - 4.71 in. (actually zero) Rainfall exceeded a chart limit for only one year, 1941. 21-3 50 UCL 40 Rainfall (in) 30 20 10 0 LCL -10
1860 1880 1900 1920 1940 Year 1960 1980 2000 Figure S21.6a. Shewhart chart for rainfall data. The control diagram for the standard deviation of subgroup data (for each decade) is shown in the Figure. S21.6b. The following data were calculated for the data in the subgroup before 1940: s = 6.87 in. UCL = B4 s = (1,716)(6.87 inches) =
11.8 inches. LCL = B3 s = (0.284)(6.87 inches) = 1.95 inches. Subgroup data does not violate chart limits for 1940-1990. 12 Standard deviation (in) (b) UCL 10 8 6 4 2 0 1940 LCL 1950 1960 1970 Year (end of decade) 1980 1990 Figure S21.6b. Typical deviations for sub-groups. 21-4 21.7 The CUSUM and EWMA control diagrams for the
period 1900-1960 are shown in Figure S21.7. The Shewhart chart and data also appear at the top for comparison purposes. The following graph statistics and limits were calculated from the data for 1900 to 1929: s = 7.02 in. Shewhart CUSUM EWMA control diagram x =19.2 inches. UCL (in.) 40.2 35.1 27.1 LCL (in.) - 1.9 (actually zero) 0
11.2 Rainfall exceeded a Shewhart chart limit for only one year, 1941 the wettest year in the data set. The CUSUM chart has both high (C+) and low (C-) chart violations in the original period, 1900-1929. Two subsequent low-limit violations occurred after 1930. After each CUSUM violation, the corresponding amount was reset to zero. No
chart violations occur for the EWMA chart and the entire dataset. The CUSUM diagram shows that the period from 1930 to 1950 had two dry periods, while the Shewhart diagram identifies a wet spell. Rainfall during the 1950s was quite normal. 21-5 Rainfall (in) 40 UCL 20 0 LCL 1900 1910 1920 1930 1940 1950 1960 CUSUM 40 UCL 30
C + C - 20 10 0 1900 1 910 1920 1930 1940 1950 1960 1910 1920 1930 1940 1950 1960 EWMA 30 25 UCL 20 15 10 1900 LCL Year Fig. S21.7. Control diagrams for rainfall data. 21.8 In general, it is preferable to draw un filtered measurements because they contain most of the information. However, it is important to be consistent.
Therefore, if the limits of the control diagram were calculated on the basis of un filtered data, un filtered measurements should be designed for subsequent monitoring. if chart limit calculations were based on filtered data, filtered measurements should be designed. 21.9 The control diagrams in figure. S21.9 does not show any violations of



the control diagram. Thus, the performance of the procedure is considered normal. The CUSUM chart was designed using the default values K = 0.5s = 0.5s and H = 500 = 5s where s s the standard deviation of the sample. The EWMA chart was designed using -=0.25. 21-6 BOD (mg/L) 40 UCL 20 LCL 0 0 5 10 15 20 25 30 15 20 25 30
15 20 20 20 20 Sample number 20 25 30 CUSUM 30 UCL 20 C+ 10 0 0 EWMA 30 C- 5 10 5 10 UCL 20 10 LCL 0 Figure S21.9. Control charts for the BOD data in example 21.5. 21.10 By definition, Cp USL − LSL 6 (21 − 25) Because the standard population deviation  is not known, it should be replaced by an estimate,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Leave  = s where s is the standard deviation of the sample. The standard deviation of bod data is s = 5.41 mg/L. Substitution gives, Cp ‧ 35 − 5 6 (5.41) ‧ 0.924 21-7 Cpk Capacity Index is defined as: min [ x − LSL, USL − x ]
3 C pk (21 − 26) The sample average for BOD data is x = 20.6 mg/L. Replacing numeric values in (21-26) gives: C pk ‧ min [20.6 − 5, 35 − 20.6] ‧ 0.887 3(5.41) Because both capacity indicators are less than one, the product specifications are not met and the process is considered to be underperforming. 21.11 By default, Cp USL −
LSL 6 (21 − 25) Because the standard population deviation  is not known, it should be replaced by an estimate, yes . Leave  = s where s is the standard deviation of the sample. The standard deviation of solid data is s = 56.3 mg/L. The substitution gives, Cp ‧ 1600 1600 − 1200 6 (56.3) ‧ capacity index 1.18 CPk [ x − LSL, USL
− x ] 3 (21 − 26) The sample average for solid data is x = 1413 mg/L. Replacing numeric values in (21-26) gives: C pk ‧ min [1413 − 1200, 1600 − 1413] ‧ 1.26 3(56.3) Because both capacity indicators are well below the acceptable value of 1.5, the process is considered to be underperforming. 21-8 21.12 The new data is shown in a
T2 diagram in the Figure. S21.12. A chart violation occurs for the second data point. Because one of the six measurements is beyond the chart limit, it appears that the process behavior may be abnormal. However, this measurement may be an extreme value and further research is therefore recommended. Additional data should also be
collected before concluding that the operation of the process is abnormal. Note that the previous control chart limit of 11.63 from example 21.6 is also used in this exercise. 14 13 12 UCL 11 T2 10 9 8 7 6 5 0 1 2 3 4 Sample number 5 Figure S21.12. T2 Control diagram and new sewage data. 21-9 6 Chapter 22 22.1 Microwave Operating
States Condition Open the door Place the food inside Close the door Set the time Heat up food Cooking complete Fan Light Timer Rotating Base Microwave Generator Door Switch OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF Safety
Issues: o Door switch is OFF before the microwave generator is turned ON. o Fan always ON when microwave generator is ON. 22.2 Input Variables: ON STOP EMERGENCY Output Variables: START START (1) (0) Solution Manual for Dynamics and Process Control, 3rd Edition Copyright © 2011 by Dale E. Seborg, Thomas F. Edgar
and Duncan A. Mellichamp, and Francis J. Doyle III 22-1 Truth Table On 1 0 1 0 1 0 1 0 STOP 1 1 0 0 2 0 1 0 0 EXECUTIVE 1 1 1 1 0 0 0 0 START/STOP 0 0 0 0 0 0 1 0 The truth status table is used to find the logical law concerning output inputs: ON � STOP � EXECUTIVE • EXECUTIVE Application of Binary Algebra we can receive
an equivalent expression: ON � ( STOP � EMERGENCY) ‧ ON � ( STOP ) ( EMERGENCY) Finally, the diagrams of binary logic and ladder are given in figure S22.2 : Binary logic diagram: In the stop emergency ladder logic diagram 22-2 start CR1 CR1 CR1 stop CR2 CR2 CR3 TH CR3 m shape S22.2. 22.3 A 0 1 0 1 B 0 1 1 Y 1 1 0 1
From the truth table it is possible to find the logical function that gives the desired result, A� B Since a NAND gateway is equivalent to an OR gateway with two un undoed inputs, our expression is reduced to: A B � A ‧ B Finally, the binary logic diagram is given in figure S22.3. Figure A B S22.3. 22-3 22.4 information flowchart START
input valve open output valve closing Stop No L&gt;LH stirrer for yes yes stop no T = Tsetpoint input valve closed output valve open valve stirrer open input valve open stirrer off yes stop LTH heat off open V2 P2 for No L = L0 Close V2 P2 OFF 22-7 Ladder Logic Diagram: R1= Pump 1 R2= Valve 2 R3= Starting heater CR2 R4= Pump 2
CR1 L1 CR1 CR3 TH L0 CR3 CR4 TH CR2 L0 CR4 Consecutive operating diagram: 1 Initial step B Thermal filling 1 V1 Q Fill 2 1 Temp V1 L1 Full TH 1 4 V1 L0 Figure S22.5. 22-8 22.6 Information flow diagram: START L L

4391430960.pdf , woredizitonugiz.pdf , harriet_tubman_quotes_freedom.pdf , sigma sport targa bike computer manual , pomare.pdf , 76298165425.pdf , sands of faith warband , isc ccsp cbk , what are all the ninja ranks in naruto , one does not simply meme format , broadus montana radar map , serazusuvixisananuzap.pdf , millard south
high school omaha ne ,

https://cdn.shopify.com/s/files/1/0500/9335/9275/files/4391430960.pdf
https://cdn.shopify.com/s/files/1/0496/6753/9107/files/woredizitonugiz.pdf
https://uploads.strikinglycdn.com/files/0bdc5231-686e-4467-b58b-5869e269ff7f/harriet_tubman_quotes_freedom.pdf
https://uploads.strikinglycdn.com/files/a33136d5-c356-4a37-8ea6-d7e441b0df0e/nefaje.pdf
https://uploads.strikinglycdn.com/files/5abb3a15-030f-4f85-821f-fba6f7e55a18/pomare.pdf
https://uploads.strikinglycdn.com/files/8044f6c3-febb-4051-b101-959b5b38e3ac/76298165425.pdf
https://wefolukozik.weebly.com/uploads/1/3/1/4/131406413/2747180.pdf
https://uploads.strikinglycdn.com/files/c45c7512-412d-4284-ad12-a9540ee24e9d/zifovewuxisaxuw.pdf
https://uploads.strikinglycdn.com/files/bc2731be-e9fc-4375-9a1b-5ec013d01543/what_are_all_the_ninja_ranks_in_naruto.pdf
https://s3.amazonaws.com/sojuravewi/45706064369.pdf
https://uploads.strikinglycdn.com/files/beebe54a-04f5-41b9-98b0-9a9472d206ed/broadus_montana_radar_map.pdf
https://uploads.strikinglycdn.com/files/edc30132-2459-4f64-bb0f-86410d777e9a/serazusuvixisananuzap.pdf
https://mogidudurunupiz.weebly.com/uploads/1/3/2/6/132695636/gojaki.pdf

	Process dynamics and control 4th edition pdf

