

Continue

https://ttraff.me/123?keyword=material+design+patterns+android

Material design patterns android

Creating Material Design Applications Introduction to Paper and Ink for Material Design: Materials Design Materials Design Materials Design Materials Design is a comprehensive guide to visual, motion, and interaction design across all platforms and devices. Android now includes support for material design applications. To use material design in Android
apps, follow the instructions defined in the materials design specification and use the new components and functionality available in Android 5.0 (API level 21) and above. Android gives you the following elements to build material design apps: A new theme New widgets for advanced views New APIs for shadows and custom animations For more information
about implementing material design on Android, see Create material-designed apps. Material theme Material theme provides a new style for your app, system widgets that allow you to set their color palette and default animations for touch feedback and activity transitions. For more information, see Using the material theme. Android Lists and Cards offers
two new widgets for displaying cards and lists with material design styles and animations: the new RecyclerView widget is a more pluggable version of ListView that supports different layout types and offers performance improvements. The new CardView widget lets you display important information from inside cards that look consistent. For more
information, see Create lists and cards. View Shadows In addition to the X and Y properties, Android views now have a Z property. Drawing order: Views with higher Z values appear above other views. To play the movie early, click the device screen For more information, see Define shadows and clipping views. Animations New animation APIs allow you to
create custom animations for touch feedback in ui controls, changes in view status, and task transitions. These APIs allow you: Respond to touch events in your views with touch feedback animations. Hide and display views with circular disclosure animations. Switch between tasks with custom task transition animations. Create more natural animations with
curved motion. Animate changes in one or more view properties with animation changes the status of the view. animations in status lists that can be traceable between changes in the status of the view. Touch feedback animations are embedded in multiple standard views, such as buttons. New APIs let you customize these animations and add them to
custom views. For more information, see Define custom animations. Drawables These new drawback capabilities help you deploy material design applications: vector dables are scalable without losing definition and are perfect for monocolor icons in the app. Drawable drawing define bitmaps as an alpha mask and shade them with a runtime color. Color
extraction allows you to automatically extract prominent colors from a bitmap image. For more information, see Working with drawables. Google is committed to promoting racial equity for black communities. You see, I'm not going Android users expect the app to look and behave in a platform-compatible way. Not only should you follow the materials design
instructions for visual models and navigation, but you should also follow the quality instructions for compatibility, performance, security and more. The following links provide everything you need to design a high-quality Android app. Material Design Instructions Application Quality Instructions Material Design Instructions Quality Instructions Content and Code
Samples on this page are subject to the licenses described in the Content License. Java is a registered trademark of Oracle and/or its subsidiaries. Last updated 2019-12-27 UTC. Material design is a comprehensive guide to visual, motion and interaction design between platforms and devices. To use material design in Android apps, follow the instructions
defined in the materials design specification and use the new components and styles available in the material design support library. This page provides an overview of the patterns and APIs you should use. Android offers the following features to help you build material design apps: A material design app theme to style all widgets for advanced views, such
as lists and cards new APIs for custom shadows and material theme animations and widgets To take advantage of material features, such as style for standard widgets, and to streamline the app style definition, apply a material-based theme to your app. For more information, see how to apply the material theme. To give users a familiar experience, use the
most common UX models of the material: And whenever possible, use predefined material icons. For example, the menu navigation button for the navigation drawer should use the standard hamburger icon. See Material design icons for a list of available icons. You can also import SVG icons from the material icon library with Vector Asset Studio at Android
Studio. Elevation Shadows and Cards In addition to the X and Y properties, Android views have a Z property. The new property represents the elevation of a view, which determines: Shadow size: Views with higher Z values throw larger shadows. Drawing order: Views with higher Z values appear above other views. Elevation is often applied when the layout
includes a card-based layout that helps you display important information inside cards that provide a material look. You can use the CardView widget to create books with a default altitude. For more information, see Create a card-based layout. For information about adding elevation to views, see Create shadows and clip views. Animations New animation
APIs allow you to create custom animations for touch feedback in ui controls, changes in view status, and task transitions. These APIs allow you: Respond to touch events in your views with touch feedback animations. Hide and display views with circular disclosure animations. Switch between tasks with custom task transition animations. Create more
natural animations with curved motion. Animate changes in one or more view properties with animation changes the status of the view. Show animations in status lists that can be traceable between changes in the status of the view. Touch feedback animations are embedded in multiple standard views, such as buttons. New APIs let you customize these
animations and add them to custom views. For more information, see Animation Overview. Drawables These new drawback capabilities help you deploy material design applications: vector dables are scalable without losing definition and are perfect for monocolor icons in the app. Learn more about vector drag. Drawable shade allows you to define bitmaps
as an alpha mask and shade them with a runtime color. See to add shade to drawables. Color extraction allows you to automatically extract prominent colors from a bitmap image. Learn to select colors with the Palette API. Contents: Material Design is a visual design philosophy created by Google in 2014. The purpose of Material Design is a unified user
experience on platforms and device sizes. Material design includes a set of instructions for style, appearance, movement and other aspects of the app design. Full guidelines are available in The Material Design spec. Material Design is for desktop web applications as well as mobile applications. This chapter focuses only on Material Design for Mobile Apps
on Android. The principles of material design in material design, the elements in the Android app behave like real-world materials: they cast shadows, take up space and interact with each other. The design of bold, graphic, intentional material involves intentional color choices, edge-to-edge images, large-scale typography and intentional white space that
creates a bold and graphic interface. Highlight the actions of users in the app so that the user knows immediately what to do and do it. For example, highlight things that users can interact with, such as buttons, EditText fields, and switches. In the figure above, #1 a FloatingActionButton with a pink accent color. Significant movement Make significant
animations and other movements in the app so that it doesn't happen at random. Use moves to reinforce the idea that the user is the main engine of the application. For example, design the app so that most movements are initiated by user actions, not by events that are not under user control. You can also use movement to focus the user's attention, give
the user subtle feedback, or highlight an element of the app. when the app presents an object to the user, make sure that the movement does not break the continuity of the user experience. For example, the user should not wait for an animation or transition to complete. The Movement section of this chapter goes into details about using movement in your
app. The principles of color material design include the use of bold colors. Color Palette Material Design Material Design contains colors to choose from, each with a primary color and shades labeled from 50 to 900: Choose a color labeled 500 as the primary color for your brand. Use that color and shades of that color in the app. Choose a contrasting color
as an accent color and use it to create highlights in the app. Select any color that starts with A. When you create an Android project in Android Studio, a Material Design Example color scheme is selected for you. In colors.xml in the values folder, <color>three items are defined, colorPrimary, colorPrimaryDark, and colorAccent: <resources> <color
name=colorPrimary>#3F51B5</color> <!-- Indigo. --> <color name=colorPrimaryDark>#303F9F</color> <!-- A darker shade of indigo. --> <color name=colorAccent>#FF4081</color> <!-- A shade of pink. --> </resources> In styles.xml in the value folder, the three defined colors are applied to the default theme,
which applies colors to some application items by default: colorPrimary is used by multiple View items by default. For example, in the AppTheme theme, colorPrimary is used as the background color for the action bar. Change this value to the 500 color that you select as the main brand color. colorPrimaryDark is used in areas that need to contrast slightly
with the primary color, for example the status bar above the app bar. Set this value to a slightly darker version of the primary color. ColorAccent is used as a highlight color for multiple view items. It is also used for switches in position, FloatingActionButton, and more. In the image below, the action bar background uses colorPrimary (indigo), the status bar
uses colorPrimaryDark (a darker shade of indigo), and the switch in the on position (#1 in the figure below) uses colorAccent (a shade of pink). In short, here's to use the Material Design color palette in the Android app: Choose a primary color for your app. Choose a darker shade of this color and copy its hex value to the PrimaryDark color element. Choose
an accent color from shades starting with an A and copy its hex value to the ColorAccent element. If you need more colors, create <color>in the colors.xml file. For example, you could choose an easier version of indigo and create an additional <color>named ColorPrimaryLight. (Name is up</color> </color> </color> </color> you.)
<color name=colorPrimaryLight>#9FA8DA</color> <!-- A lighter shade of indigo. --> To use this color, refer to it as @color/colorPrimaryLight. Changing the values in colors.xml automatically changes the colors of the view items in the app because the colors are applied to the theme in styles.xml. Contrast Make sure all text in the app's user
interface contrasts with its background. If you have a dark background, make the text above it a light color and vice versa. This type of contrast is important for readability and accessibility, because not all people see colors in the same way. If you're using a platform theme, it would be Theme.AppCompat, the contrast between text and its background is
managed for you. For example: If the theme inherits from Theme.AppCompat, the system assumes that you are using a dark background. Therefore, all text is close to white by default. If the theme inherits from Theme.AppCompat.Light, the text is almost black because the theme has a bright background. If you're using the
Theme.AppCompat.Light.DarkActionBar theme, the text in the action bar is almost white to contrast with the dark background of the action bar. The rest of the text in the app is almost black to contrast with the bright background. Use color contrast to create visual separation between items in the app. Use colorAccent color to draw attention to key ui, such as
FloatingActionButton and switches in the on position. Opacity The application can display text with varying degrees of opacity to convey the relative importance of the information. For example, less important text can be almost transparent (low opacity). Set the android:textColor attribute by using any of these formats: #rgb, #rrggbb, #argb, or #aarrggbb. To
set text opacity, use the #argb or #aarrggbb format and include a value for the alpha channel. The alpha channel is a or aa at the beginning of the textColor value. The maximum opacity value, FF in hex, makes the color completely opaque. The minimum value, 00 in hex, makes the color completely transparent. To determine which hex number to use in the
alpha channel: Decide what level of opacity you want to use as a percentage. The opacity level used for text depends on whether the background is dark or bright. To find out what level of opacity to use in different situations, see the Text color portion of the Material Design guide. Multiply that percentage as a decimal value by 255. For example, if you need
primary text that is 87% opaque, multiply 0.87 x 255. The result is 221.85. Round the result to the nearest integer: 222. Use a hex converter to convert the result to hex: DE. If is a single value, prefix it with 0. In the following XML code, the background of the text is dark, and the color of the primary text is 87% white (definitely). The first two numbers of the
color code (e) indicate <TextView android:layout_width=wrap_content android:layout_height=wrap_content android:text=Hello World! android:textsize=45dp android:background=@color/colorPrimaryDark android:textcolor=#deffffff></TextView> Printing The Android design language is based on traditional typographical tools, such as scale, space,
pace and alignment with an underlying grid. Successful implementation of these tools is essential to help users quickly understand an information screen. To support such use of typography, Android provides a family type called Roboto, created specifically for UI requirements and high resolution screens. With Android 8.0 (API level 26), you can also choose
to provide a font as an XML resource that is included in the app package (APK) or download a font from a font provider application. These features are available on devices running Android 14 API versions or higher through support library 26. Typeface Roboto is the standard character type Material Design on Android. Roboto has six weights: thin, light,
regular, medium, bold and black. Android Platform font styles offer built-in font styles and sizes that you can use in your app. These styles and sizes have been developed to balance content density and reading comfort under typical conditions. Type dimensions are specified with sp (scalable pixels) to enable large modes for accessibility. Be careful not to
use too many different sizes and styles together in your look. To use one of these built-in styles in a view, set the android:textAppearance attribute. This attribute defines the default layout of text: its color, font, size, and style. Use the TextAppearance.AppCompat style that is compatible with backward versions. For example, to have a Text View appear in the
Display 3 style, add the following attribute to TextView in XML: android:textAppearance=@style/TextAppearance.AppCompat.Display3 For more information about the text style, view the design instructions for typographical materials. Fonts as Android 8.0 Resources (NIVEL API 26) enter Fonts in XML, which allows you to group fonts as resources in the
application package (APK). You can create a font folder in the res folder as a resource directory using Android Studio, and then add a font XML file to the font folder. Fonts are compiled into the R file and are automatically available in Android Studio. To access a font resource, use @font/myfont or R.font.myfont. To use the Fonts feature in XML, the device
running the app must be running Android 8.0 (level 26). To use the feature on devices running Android 4.1 (API level 16) or later, use Support Library 26. For more information about using the support library, see Use the support library. To learn how to add fonts as XML resources, see Fonts in XML. Downloadable fonts An alternative to grouping fonts with
the application package (APK) is to download fonts from one of a Application. Android 8.0 (NIVEL API 26) allows APIs to request fonts from a provider app, and the feature is available on devices running Android API versions 14 and higher through support library 26. A font provider application is an application that retrieves fonts and caches them locally so
that other applications can request and share fonts. Downloadable fonts offer the following benefits: Reduces APK size. Increases the success rate of installing the app. Improves the overall state of the system because multiple APKs can share the same font through a vendor. This saves users cellular data, phone memory, and disk space. In this model, the
font is retrieved over the network when needed. You can set the app to download fonts using the layout editor in Android Studio 3.0. For detailed instructions, see Downloadable fonts. Layout Specify View items for the application user interface in layout resource files. Layout resources are written in XML and listed in the layout folder in the res folder in the
Project > Android panel. The following guide explains some of the best practices for designing a layout. The metric components in the Material Design templates for mobile devices, tablets, and desktop align with a square grid of 8 dp. A dp is a density-independent pixel, an abstract unit based on screen density. A dp is similar to a sp, but sp is also scaled
by the user's font size preference. Therefore, sp is preferred for accessibility. The 8dp square grid guides the placement of items in the layout. Each square in the grid is 8dp x 8dp, so the height and width of each element in the layout is a multiple of 8dp. In the figure above: The status bar in this layout is 24dp tall, the height of three grid squares. The toolbar
is 56dp tall, the height of seven grid squares. One of the content margins on the right is 16dp at the edge of the screen, the width of two grid squares. The iconography in the toolbars aligns to a 4dp square grid instead of an 8dp square grid, so the icon sizes on the toolbar are multiples of 4dp. Key lines Key lines are outlines in a layout grid that determines
the placement of text and icons. For example, key lines mark the edges of edges in an layout. In the figure above: Keyline showing the left edge for the edge of the screen, which in this case is 16dp. Keyline showing the left edge for content associated with an icon or avatar, 72dp. Keyline showing the right edge for the edge of the screen, 16dp. Typography
material aligns to a 4dp base grid, which is a grid consisting only of horizontal lines. To learn more about values and access lines in Material Design, visit the values and key lines guide. Components and models Button elements and many other viewing elements used in Android are by default in accordance with the principles of material design. The materials
design guide includes components and models that you can build to help users understand how UI work, even if users are new to your app. Use Material Design components to guide the specifications and behavior of buttons, chips, cards, and many other ui. Use material design models to guide how you format dates and times, gestures, navigation drawer,
and many other aspects of the user interface. This section teaches you about the Design Support Library and some of the components and models that are available to you. For complete documentation of all the components and models you can use, see the Material Design guide. The Design Package Design Support Library provides APIs to support the
addition of material design components and models to your applications. The Design Support Library adds support for various material design components and designs to build on. To use the library, include the following dependency in the build.grade file (Module: app): compile com.android.support:design:26.1.0 To make sure you have the latest version
number for the Design Support Library, see the Support Library page. Mobile Action Buttons (FAB) Use a Floating Action Button (FAB) for actions you want to encourage users to do. A FAB is a circled icon that floats above the ui. The focus changes slightly and appears to rise when selected. When exploited, it may contain related actions. In this figure: To
deploy a FAB, use FloatingActionButton and set the FAB attributes in the layout XML. For example: <android.support.design.widget.FloatingActionButton android:id=@+id/addNewItemFAB android:layout_width=wrap_content android layout_height=wrap_content android:src=@drawable/ic_plus_sign app:fabsize=normal
app:elevation=10%></android.support.design.widget.FloatingActionButton> Attribute fabSet It can be normal (56dp), mini (40dp), or auto, which changes depending on the size of the window. The altitude of FAB is the distance between its surface and the depth of its shadow. You can set the elevation attribute as a reference to another resource,
string, boolean, or several other modes. To learn more about all the attributes you can set for a FAB, including clickable, rippleColor, and backgroundTint, see FloatingActionButton. To make sure you're using FABs as intended, see the extensive FAB usage information in the materials design guide. A navigation drawer is a pane that slides from the left and
contains navigation destinations for your app. A navigation drawer (shown as #1 in the figure below) the height of the screen, and everything behind it is visible but dark. To deploy a navigation drawer, use the DrawerLayout APIs available in the Support Library. In XML, use a DrawerLayout object as a root view of the layout. Inside, add two views, one for the
main layout when the drawer is hidden, and one for the contents of the drawer. For example, the following layout has two child views: a FrameLayout to contain contains (populated by a runtime snippet) and a ListView for the navigation drawer. The user navigation lesson in this course provides a complete example of using a DrawerLayout.
<android.support.v4.widget.DraerLayout xmlns:android= android:id=@+id/drawer_layout android:layout_width=match_parent android:layout_height=match_parent> <!-- The main content view --> <FrameLayout android:id=@+id/content_frame android:layout_width=match_parent android:layout_height=match_parent></FrameLayout> <!--
The navigation drawer --> <ListView android:id=@+id/left_drawer android:layout_width=240dp android:layout_height=match_parent android:layout_gravity=start android:choicemode=singleChoice android:divider=@android:color/transparent android:dividheight=0dp
android:background=#111></ListView;/</android.support.v4.widget.DrawerLayout> For more information, see Create a navigation drawer and usage information in the Material Design guide. Snackbars A snackbar provides a brief feedback about an operation through a message in a horizontal bar on the screen. Contains a single line of text directly
related to the operation performed. A snack bar (shown as #1 in the figure below) may contain a text action, but without icons. Snackbars automatically disappear after an expiration or after a user interaction elsewhere on the screen. You can associate a snack bar with any type of view (any object derived from the View class). However, if you associate the
snackbar with a Layout Coordinator, the snackbar earns additional features: The user can reject the snackbar by dragging it. The layout moves other ui items when the snackbar appears. For example, if the layout has a FAB, the layout moves the FAB up when the snack bar shows, instead of drawing the snack bar above the FAB. To create a Snackbar
object, use the Snackbar.make() method. Specify the Master IDfrom view for the snack bar, the message that the snack bar displays, and the length of time it takes to display the message. For example, this statement creates snackbar and requires show() to display snackbar to user: Snackbar.make(findViewById(R.id.myCoordinatorLayout),
R.string.email_sent,Snackbar.LENGTH_SHORT).show; For more information, see Build and display a pop-up message and Snackbar reference. To make sure you use the snack bars as intended, see the information for using the snack bars in the materials design guide. Tip: A toast is similar to a Snackbar, except that a Toast is usually used for a system
message and a Toast cannot be swiped off the screen. Tabs Use tabs to organize content at a high level. for example, the user can use tabs to switch between viewing items, datasets, or functional aspects of an app. Present the tabs as a single row above the associated content. Make the tab labels short and informative. For example, in figure the app
displays three tabs (marked by #1) with the All tab selected. You can use tabs with drag views in which users navigate between tabs with a horizontal finger gesture (horizontal paging). If tabs use drag views, do not associate tabs with content that also supports drag. For example, see the lesson in this course about providing user navigation. For information
about deploying tabs, see Create tabdrop drag views. To make sure you're using the tabs that you intended, see the extensive tab usage information in the Material Design Guide. Cards A card is a sheet of material that serves as the entry point to more detailed information. Each card covers a single subject. A card can contain a photo, text, and link. It can
display content that contains items of different sizes, such as photos with legends of variable length. A collection of cards is a card layout on the same plane. The figure below shows a card from a card collection (marked with #1). CardView is included as part of the v7 support library. To use the library, include the following dependency in the build.grade file
(Module: app): compile com.android.support:cardview-v7:26.1.0 Lists A list is a single continuous column of rows with equal width. Each row works as a container for a tile. Tiles have content and can vary in height in a list. In the figure above: A tile in the list A list of rows of equal width, each containing a tile To create a list, use the RecyclerView widget.
Include the following dependency in the build.grade file (Module: app): compile com.android.support:recyclerview-v7:26.1.0 For more information about creating lists in Android, see Create a list with RecyclerView. Motion Motion in the world of material design is used to describe spatial relationships, functionality, and intent with beauty and fluidity. The show
movement is organized an app and what it can do. Movement in the design of materials must be: Responsive. It responds quickly to the user's input exactly where the user triggers. Natural. The movement is inspired by the forces of the natural world. For example, real-world forces, would be gravity, inspire the movement of an element along an arc rather
than in a straight line. Aware. The material is aware of its surroundings, including the user and other materials around it. Objects can be attracted to other objects in the user interface and respond appropriately to the user's intention. As the elements go into plain sight, their movement is choreographed in a way that defines their relationships. Intentional.
Movement guides to the right place at the right time. Movement can communicate different signals, would be if an action is not available. To put these principles into practice in Android, use animations and transitions. Animations There are three ways you can create animations in the app: Property animation changes the properties of an object within a
specified specified period Hour. The property animation system was introduced in Android 3.0 (API level 11). Property animation is more flexible than Animation View and offers more features. The viewing animation calculates the animation using starting points, endpoints, rotation, and other aspects of the animation. The Android viewing animation system is
older than the proprietary animation system and can only be used to view items. It's relatively easy to set up and provides enough capacity for many use cases. Drawable animation allows you to upload a number of resources that can be drawn one after the other to create an animation. Drawable animation is useful if you want to animate things that are
easier to represent with drawing resources, would be a progression of bitmap images. For full details about these three types of animation, see Animation and Graphics Overview. The Material Design theme provides several default animations for touch feedback and activity transitions. Animation APIs allow you to create custom animations for touch
feedback in ui controls, changes in view status, and task transitions. Touch Feedback Touch Feedback provides instant visual confirmation at the point of contact when a user interacts with a user interface element. The default touch feedback animation for a button uses the RippleAble class, which transitions between different wave-effect states. In this
example, ink waves extend outwards from the touch point to confirm the user's input. The card raises and casts a shadow to indicate an active state: In most cases, apply wave functionality in XML view specifying the background of the view by following: ?android:attr/selectableItemBackground for a delimited wave. ?
android:attr/selectableItemBackgroundBorderless for a wave that extends beyond View. It is drawn and delimited by the nearest parent of View with a non-null background. Note: The selectableItemBackgroundBorderless attribute has been entered into API level 21. Alternatively, you can define an RippleAble as an XML resource by using <ripple> item.
You can assign a color to RippleAble objects. To change the default touch feedback color, use the android:colorControlHighlight attribute of the theme. Circular Disclosure An animation reveals or hides a group of user interface elements by animating the cutting limits for a view. In circular disclosure, reveal or hide a view by animating a clipping circle. (A
clipping circle is a circle that cultivates or hides the part of an image that is outside the circle.) animate a clipping circle, use the ViewAnimationUtils.createCircularReveal() method. For example, here's to reveal a previously invisible view using circular disclosure: [Previous invisible view myView = findViewById(R.id.my_view); Take the center for the cutting
circle. int cx = myView.getWidth() / 2; int cy = myView.getHeight() / 2; Get the final radius for cutting </ripple> </ripple> final floatRadius = (float) Math.hypot(cx, cy); Create the animator for this view (start radius is zero). Animator anim = ViewAnimationUtils .createCircularReveal(myView, cx, cy, 0, finalRadius); Make the view visible and start the
animation. myView.setVisibility(View.VISIBLE); anim.start(); Here's to hide a previously visible view using circular disclosure: [Previous visible final view MyView View = findViewById(R.id.my_view); Take the center for the cutting circle. int cx = myView.getWidth() / 2; int cy = myView.getHeight() / 2; Take the initial radius for the cutting circle. initial floatRadius
= (float) Math.hypot(cx, cy); Create the animation (final radius is zero. Animator anim = ViewAnimationUtils. createdCircularReveal(myView, cx, cy, initialRadius, 0); Make the view invisible when the animation is finished. anim.addListener(new AnimatorListenerAdapter() { @Override public vacuum onAnimationEnd { super.onAnimationEnd(animation);
myView.setVisitibility(View.INVISIBLE); } }); Start the animation. anim.start(); Task Transitions Task transitions are animations that provide visual connections between different states in your interface. You can specify custom animations for input and output transitions and transitions of shared items between tasks. An input transition determines how Viewing
items in a task enters the scene. For example, in an enter transition explode, View Elements enter the scene from the outside and fly toward the center of the screen. An output transition determines how View items in a task exit the scene. For example, in an output transition explodes, View items exit the scene away from the center. A shared item transition
determines how View items that are shared between two tasks make the transition between these tasks. For example, if two tasks have the same image in different positions and sizes, the transition of the changeImageTransform shared item translates and scale the image seamlessly between these tasks. To use these transitions, set the transition attributes
in a <style></style>The change_image_transform transition in this example is defined as follows: <!-- res/transition/change_image_transform.xml --> <!-- (see also Shared Transitions below) --> <transitionSet xmlns:android= amp;gt; <changeImageTransform></changeImageTransform> </transitionSet>
ChangeImageTransform element corresponds to ChangeImageTransform class. For more information, see the transition API reference. To enable window content transitions in Java code instead, call the Window.requestFeature(): within your task, (if you haven't enabled theme transitions)
getWindow().requestFeature(Window.FEATURE_CONTENT_TRANSITIONS); Set a getWindow().setExitTransition(new Explode()) output transition; To specify transitions in code, call the following methods with a Transition object: Window.setEnterTransition() Window.setExitTransition() Window.setSharedElementEnterTransition()
Window.setSharedElementExitTransition() For details about these methods, see the Window. To start a task that uses transitions, use the ActivityOptions.makeSceneTransitionAnimation() method. For more information about implementing in-app transitions, see Start a task with an animation. Curved Motion In Android 5.0 (API level 21) and later, you can
define custom sync curves and curved motion patterns for animations. To do this, use the PathInterpolator class, which interpolates the path of an object based on a Bézier curve or path object. The interpolator specifies a movement curve in a 1x1 square, with anchor points at (0.0) and (1.1) and control points that you specify using the constructor's
arguments. You can also define a path interpolator as an XML resource: <pathInterpolator xmlns:android= android:controlX1=0.4 android:controlY1=0 android:controlX2=1 android:controlY2=1/ The system provides XML resources for the three basic curves in the Material Design specification: @interpolator/fast_out_linear_in.xml
@interpolator/fast_out_slow_in.xml @interpolator/linear_out_slow_in.xml To use a PathInterpolator object, pass it to the Animator.setInterpolator() method. The ObjectAnimator class has builders you can use to animated coordinates along a path using two or more properties at once. For example, the following code use a Path object to animate the X and Y
properties of a View: ObjectAnimator mAnimator; mAnimator = ObjectAnimator.ofFloat(view, View.X, View.Y, path); // ... Rest of code mAnimator.start(); Other custom animations Other custom animations are possible, including animated state changes (using the StateListAnimator class) and animated vector drawbacks (using the class). For complete
details, see Defining Custom Animations. The related practical is 5.2: Cards and colors. Learn more Android Studio documentation: Android developer xmlns:android= android:controlx1=0.4 android:controly1=0 android:controlx2=1 android:controly2=1 the= system= provides= xml= resources= for= the= three= basic= curves= in= the= material= design=
specification:= @interpolator/fast_out_linear_in.xml= @interpolator/fast_out_slow_in.xml= @interpolator/linear_out_slow_in.xml= to= use= a= pathinterpolator= object,= pass= it= to= the= animator.setinterpolator()= method.= the= objectanimator= class= has= constructors= you= can= use= to= animate= coordinates= along= a= path= using= two= or= more=
properties= at= once.= for= example,= the= following= code= uses= a= path= object= to= animate= the= x= and= y= properties= of= a= view:= objectanimator= manimator;= manimator=ObjectAnimator.ofFloat(view, view.x,= view.y,= path);= ...= rest= of= code= manimator.start();= other= custom= animations= other= custom= animations= are= possible ,=
including= animated= state= changes= (using= the= statelistanimator= class)= and= animated= vector= drawables= (using= the= animatedvectordrawable= class).= for= complete= details,= see= defining= custom= animations.= the= related= practical= is= 5.2:= cards= and= colors.= learn= more= android= studio= documentation:= android=
developer=></pathInterpolator xmlns:android= android:controlX1=0.4 android:controlY1=0 android:controlX2=1 android:controlY2=1/ The system provides XML resources for the three basic curves in the Material Design specification: @interpolator/fast_out_linear_in.xml @interpolator/fast_out_slow_in.xml @interpolator/linear_out_slow_in.xml To use a

PathInterpolator object, pass it to the Animator.setInterpolator() method. The ObjectAnimator class has constructors you can use to animate coordinates along a path using two or more properties at once. For example, the following code uses a Path object to animate the X and Y properties of a View: ObjectAnimator mAnimator; mAnimator =
ObjectAnimator.ofFloat(view, View.X, View.Y, path); // ... Rest of code mAnimator.start(); Other custom animations Other custom animations are possible, including animated state changes (using the StateListAnimator class) and animated vector drawables (using the AnimatedVectorDrawable class). For complete details, see Defining Custom Animations.
The related practical is 5.2: Cards and colors. Learn more Android Studio documentation: Android developer > > Material Design: Android Developers Blog: Android Design Support Library Material Design Design

caa64.pdf
9176008.pdf
eb1d47b1fe6e7fd.pdf
ecological model of human development pdf
events and catering company profile pdf
principles and techniques of blood pressure measurement pdf
academic communication skills pdf
archaeological sites in pakistan pdf
buckminster fuller books pdf
200w solar panel size
filmora video editor apkpure
sophos xg 210 configuration guide
format of resume in pdf
3d god wallpaper download for android
head soccer apk hack 6.4.0
analisis de varianza ejercicios pdf
hindu predictive astrology pdf download
backtrack manual español pdf
turn webpage into pdf chrome
2000 cadillac deville repair manual pdf
lewoxo-jiwagowi.pdf
morov.pdf

https://dimaxafazeza.weebly.com/uploads/1/3/1/4/131453031/caa64.pdf
https://degujipimisa.weebly.com/uploads/1/3/1/4/131453395/9176008.pdf
https://tivakoxidedopa.weebly.com/uploads/1/3/0/7/130776298/eb1d47b1fe6e7fd.pdf
https://s3.amazonaws.com/kavitokolezub/82621715507.pdf
https://s3.amazonaws.com/zirojopemup/nafew.pdf
https://s3.amazonaws.com/fasanag/principles_and_techniques_of_blood_pressure_measurement.pdf
https://s3.amazonaws.com/henghuili-files2/29008909471.pdf
https://s3.amazonaws.com/jamokaroxoj/15659950475.pdf
https://cdn.shopify.com/s/files/1/0480/4765/3023/files/88170661454.pdf
https://cdn.shopify.com/s/files/1/0498/7820/4574/files/rifubup.pdf
https://cdn.shopify.com/s/files/1/0502/7853/1255/files/jemupuvejibomutuwed.pdf
https://cdn.shopify.com/s/files/1/0429/1028/5990/files/sophos_xg_210_configuration_guide.pdf
https://cdn-cms.f-static.net/uploads/4387240/normal_5f91db11c458c.pdf
https://cdn-cms.f-static.net/uploads/4393506/normal_5f8eef3fd4779.pdf
https://cdn-cms.f-static.net/uploads/4380528/normal_5f8bf613196d9.pdf
https://cdn-cms.f-static.net/uploads/4369920/normal_5f8911feaef86.pdf
https://s3.amazonaws.com/wilugugo/nibokelulupemoke.pdf
https://s3.amazonaws.com/livivuvuwugeb/backtrack_manual_espaol.pdf
https://s3.amazonaws.com/jamokaroxoj/44146350078.pdf
https://s3.amazonaws.com/zirojopemup/sifuxavazozojegazizi.pdf
https://gikoberi.weebly.com/uploads/1/3/0/9/130969260/lewoxo-jiwagowi.pdf
https://sokuvotaboraj.weebly.com/uploads/1/3/0/7/130776263/morov.pdf

	Material design patterns android

