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From ScholarpediaPost-publishing activityCurator: Mark Bowen Singular Theory of Perturbation concerns the study of problems with a parameter for which solving a problem at the limit of the parameter differ in nature from the limit of solutions to a common problem; namely, the limit is exceptional. In contrast, for regular perturbation
problems, solutions to a common problem converge with solutions to the ultimate problem as the parameter approaches the cost limit. Although classically having its origins in the study of differential equations, special problems of perturbation arise in a wide range of contexts. It is impossible to provide an exhaustive list, but we discuss
some of the commonalities below and provide links for further reading. History and key ideas Much of the early motivation in this area arose from the study of physical problems (O'Malley 1991, Cronin and O'Malley 1999). Notable examples are: Each of these areas provides problems whose solutions have features that vary in disparate
length or time. The philosophy of the theory of special perturbation is to take advantage of this division of weights to get reduced problems that are easier than the original complete problem. One of the key elements of the work in this area is to build an approaching a complete (global) solution to a single problem in terms of solving
abbreviated problems. Algebraic equations Although we do not include many fully developed problems in the present, it is illustrative to consider the main example in singularly indignant algebraic problems. Algebraic equations serve as a good setting for the introduction of many fundamental issues, also present in more general types of
particular problems. For comparison purposes, let's first consider the regular perturbation problems of tag{1} x2 3 epsilon x -40 quadmbox asquad epsilon to 0. These two solutions can be expressed in the form of regular extensions{2} tag{2} x x_0 delta_1 (Epsilon) x_1 delta_2 (Epsilon) x_2 y delta_3 (Epsilon) x_3 qsdot Where the sensor
functions, Tag{3} 1'gg (gg)delta_1 gg delta_2 gg delta_3 gg cdots qquad mboxas quad'epsilon until 0. This defines the non-trivial term of the lead order (x_0)) as an asymptomatic approximation to the full solution for (epsilone to 0) with higher terms of order in extensions considered to be consistently smaller corrections to (x_0)) in this
limit. The problem with the lead order arises by valuing (1) by limit, Epsilon 0, tag{4} x_0 2 -40, conceding two solutions, (x_0 pm 2), as expected, as the complete problem is a square equation. Replacing (2) by (1) and balancing terms for (Epsilon delta_n) defines sensor functions as (x_n) for higher order terms in each of the two roots,
(x'sim 'pm 2-'3'over 2' (Epsilon (pum 9)over 16'epsilon,2, where the symbol (sim) defines two functions as asymptically equivalent, say (f (Epsilon) th (Epsilon) if (lim_ Epsilon) up to 0 f (Epsilon)/g (Epsilon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tag{5}
epsilon x2 3x -40qquad epsilon to 0. Please note that the small option now multiplies the highest order time. Consequently, the use (2) gives the leading order problem (tag{6} 3x_0-4'0, which has only one solution (x_0 4/3)) The loss of one root equation is a consequence of another solution (5) being the only one for (Epsilon to 0, and
therefore does not form a regular ansatz extension (2). Rescaling and respected limits Solutions many special problems can be found with appropriate transfusions. In this case, consider where the regular extension may be written X (Epsilon) (X (Epsilon) . Replacement (5) gives a tag {7} epsilon (delta)2 X_0 2 and 3 delta X_0 -40. For
this problem, there are two options for q (Delta (Epsilon) that produce consistent results (with all forgotten terms being asymptically subdominant): delta (delta) obtained by balancing the second and third terms in (7), conceding (3X_0-4'0) This is the leading order problem for the solution as previously received (6). Delta1/epsilon), obtained
by balancing the first and second terms in (7), conceding (X_0 2 3X_0 0) and producing (X_0 -3) the leading order term in the expansion of a single solution (x'sim -3/epsilon.) the second case is called the exceptional outstanding limit. For a typical example (1), the term epsilon x/O (epsilon) to 0 is dropped when moving to a leading order
equation (4). For both decisions (1), the term is indeed less than the term (O(1) in the dominant balance for (4). This condition is true for a regular solution, with Epsilon x2O (Epsilon) to 0 , but violated for a single solution, with Epsilon x2 O 1 / Epsilon) for infty) This is a consequence of the attempt to use the regular outstanding limit with a
special decision; (X-2'3X-4'epsilon'0'), which corresponds to the only dominant balance, is the appropriate form (7) for a single solution. This elementary example reflects many aspects that are common to particular perturbations for classes of more complex systems, such as integral equations and eigenvalue problems for the matrix,
(A'vec' x' th 'lambda' (Epsilon) vec x .) We also note that the above approach can be considered graphically in terms of the so-called charts of Cruscal-Newton (White 2005); this graphic approach can also be extended to some of the differential equation problems described below. Differential equations of singular perturbation problems for
differential equations may occur differently and tend to be more complex than their algebraic counterparts. Similarly, though, solutions for the complete equation when (Epsilon) can differ significantly (by number or form) from limiting solutions like (Epsilon) to 0 ; in particular, decisions will not have a homogeneous dependence on. In what
follows, we describe three methodologies for studying solutions to singularly perturbed differential equations. The choice of the technique used depends on the shape of the problem, as well as on the desired properties that need to be explored. WKB's analysis of singularly perturbed differential equations arise in many applications, such
as wave propagation and quantum mechanics. A powerful approach coming from these areas applicable to linear homogeneous differential equations is the VKB method (after Wenzel-Kramers-Brilluin, also known as WKBJ for WKB-Jeffreys) (see Bender and Orshag 1999). Consider the second order equation, \[\tag{8} \epsilon {d^2y\over
dx^2} +p(x) {dy\over dx} + q(x) y=0\quad\mbox{as}\quad\epsilon\rightarrow0. \] Expressing the solution in terms of a phase function, \(y(x)=\exp(s(x))\ ,\) transforms the problem to a nonlinear equation for the phase, \[ \epsilon(s'' + {s'}^2) + p s' + q =0. \] Setting \(\epsilon=0\) reduces the problem to a first order ODE for \(s(x)\) where,
analogous to the singular algebraic problem considered above. In search of distinguishable limits, we scale the phase as a (s(x)delta (epsilon) S (x)) and expand (S) as a regular series of perturbations. To solve this problem, S (Sasima S_0 (S_2 x) - Epsilon S_1 (x) Epsilon 0 to 0: (delta)1 , with a problem of leading order (p(x) S'0 q (x)
corresponding to the usual solution, (py_0' q y_0 '0'0'.) (Delta-1/Epsilon), with a leading order problem ('S_0'2' p/x) S_0'0', sometimes called the eiconic equation. In each case, the problem boils down to a simpler algebraic equation in terms of (S_0's) with only parametric dependence on x (x) Getting uniform solutions (8) from solutions for
(S(x) can be difficult, when non-homogeneity is introduced due to the shape of the coefficient functions (8) in areas of so-called turning points (Wasow 1965). Figure 1: The Singully-indignant Differential Equation Scheme can provide solutions containing areas of rapid change (fast compared to the usual length scale for the problem).
These regions, which may be evident in the solution or in its derivatives, are called layers and often appear at the domain boundary (as shown in Figure 1). Building a differential equation or system solution involves several steps: determining the location of layers (borders or internal), getting asymptomatic approximation to a solution in
different regions (appropriate to different discernible limitations in equations) and, ultimately, forming a one-way, informed solution across the entire domain. Solutions received for layers (the only outstanding limits) are generally called internal solutions, while slow-changing solutions for regular distinguishable limits are called external
solutions. An evenly sound solution can be constructed by asymptomatic juxtaposition of internal and external decisions, which is based on the fundamental assumption that different forms of solution intersect in an identifiable area (see figure 1). Procedures for comparing asymptomatic extensions have been studied by Kaplun, Van Dyke
and others (Lagerstrom 1988, Van Dyke 1975, Kevorkian and Cole 1996, Eckhaus 1979), but there are still some fundamental theoretical issues that need to be addressed. Unlike WKB theory, this approach can also be applied to non-linear equations, and this versatility solves a wide range of problems: in dynamic systems, time-solving
boundary layers typically emerge as initial layers, connecting the baseline with the regular or slow dynamics of the external solution. Relaxation oscillators are dynamic systems with periodic solutions consisting of fast (inner layers) and slow (external) dynamics. Canards are special solutions of this type. The theory of geometric special
perturbations provides a rigorous approach to describing the solutions of singularly indignant dynamic systems, based on Fenichel's analysis of the diversity underlying the system (Jones 1995, Kaper in Cronin and O'Malley 1999, pp 85-132). In some problems (especially in fluid dynamics and combustion), boundary layers may exist in
nested forms; they are often known as three-deck problems (Murdock 1999, Van Dyke 1975) An important problem in partial differential equations is the construction and analysis of the matcaging of hyperbolic conservation laws - shocks that appear in solutions to irregular equations can be seen as special limits to viscous inner layers
(Kevorkian and Cole 1996, Sauderer 2007). These and similar methods can be applied to problems related to equation differences and (Hoppensteadt, 2010). Multi-scale analysis for long-term dynamics Prototype of another other tag{9} d2y (more dt'2) epsilon (y2-1) dyover dt y'0'quad'epsilonto0. This equation does not have the type
described in the previous sections, as a small parameter does not multiply the term of the highest order; the equation does not decrease in order, as the equation (9) is a weak non-linear oscillator, reducing the equation to a linear oscillator on the leading order. For the ultimate, limited time, solutions that may be asymptotically close to the
use of regular expansion, (y(t) y_0 (t) Epsilon y_1 (t) cdots), with the lead order solution, (y_0(t)A'cos (t'phi)) However, in big times (t'to'in)), naive regular expansion disintegrates due to the emergence of secular terms (terms that grow over time). This failure of the regular extension can be traced back to the fact that the limits (Epsilon) and
(t'to'infty) do not commute, and this means that the extension is not evenly valid over time. The growing cumulative error of phase and amplitude, evident with regular expansion, is a consequence of Anzac limitations, especially deviations from the unflappable natural frequency of the system. Various methods of indignation have been
developed to address such problems. These include: Similar ideas also arise in the theory of homogenization, taking into account the averaging of spatially periodic structures of materials (Bensoussan et al 1978, Holmes 1995). We have only scratched the surface of this research area, but it is hoped that the above illustrates the strength
and usefulness of methods grouped in accordance with the theory of particular perturbation. As mentioned above, singular perturbation theory solves complex problems by investigating various reduced problems and then collecting results together in an appropriate form. These abbreviations may, for example, be simply for a lower-order
polynomial in algebraic problem, or may be more significant, such as in the reduction of EDE to ODE, or a functional equation to one of the algebraic forms. Reduced problems can still be mathematically complex, and building a uniformly sound solution requires an analytical solution. While some special methods of perturbation are based
on careful analysis, a wide range of applications and methods available tend to limit such results. Consequently, methods are often classified as formal methods. However, this is not considered a significant problem: any a priori assumptions can be tested for consistency after receiving suitable extensions; furthermore, it is known that the
formal results obtained through these methods provide direction for additional rigorous theory (Smith 1985, Eckhaus 1979). In fact, some authors have seen the common side of the methods above as a representative of some more fundamental notion. For example, Kruskal came up with the introduction of the term asymptothology, citing
the art of working with applied mathematical systems in restrictive cases (Kruskal 1963) and considered singular theory of perturbism (and asymptotic methods in general) as a component of asymptotic. Links Internal Links by Ian A. Sanders (2006) Averaging. Scholarpedia, 1(11):1760. Martin Wehselberger (2007) Canary. Scholarpedia,
2(4):1356. Silvio Ferraz-Mello (2009) Heavenly Mechanics. Scholarpedia, 4(1):4416. James Meiss (2007) Dynamic Systems. Scholarpedia, 2(2):1629. Carson K. Chow (2007) Multi-scale analysis. Scholarpedia, 2(10):1617. James Murdoch (2006) Normal Forms. Scholarpedia, 1(10):1902. Jeff Mohlis, Cresimir Joshic, Eric T. Shea-Brown
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