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In this post we describe a stationary and unsteady series of time. First, we ask why we want the station, and then describe the station's resilience and weak sense of stationiness. Next, we'll discuss the station trend and the KPSS test. We end with a discussion of stochastic tendencies and distinguishing. BackgroundWhy station? In the
analysis of time series, we would like to simulate the evolution of an hour-long series of observations. We especially want to simulate the momentary functions of the time series. For example, the average function describes how the average value evolves over time, while the conditional average function describes the same past values. The
auto-car-kovarian function describes the covariance between values at different points in time. We may also be interested in higher moment functions. When assessing the parameters describing them, we would like to be able to apply standard results from probability and statistics, such as the law of large numbers and the central limit
theorem. If the functions of the moment are permanent, it makes modeling much easier. For example, if the average instead we rate the constant rather than the function. This applies similarly to higher points. What is a standard? The stochastic process is stationary if for any fixed does not change as a function. In particular, moments and joint
moments are permanent. This can be intuitively described in two ways: 1) statistical properties do not change over time 2) sliding windows of the same size have the same distribution. A simple example of a stationary process is the Gossan white noise process, where each observation is iid. Let's model the Gausian white noise and stir it up:
many stationary time series look a bit like this one when built. white_noise'lt;-ernorm (100,0,1) plot (white_noise,type'l', xlab'time,'ylab'expression ('x't'), the main 'White Noise Process') A simple example of a non-stationary process is a casual walk. This is the sum of iid random variables with average. Let's use rademacher random variables
(take the values of each with a probability). We model the steps and dare them. The plot (extraDistr) random_walk'lt;-cumsum (rsign (10000)) plot (random_walk,type'l',xlab'','ylab'expression ('x't),main'''Random Walk') It's not super easy to see it from the plots, but it can be shown mathematically that the variance of the time series increases
over time, which disrupts the stationar. The weak feeling of StationarityOften we are primarily interested in the first two moments of the time series: the middle and the functions of auto-kovarianity. The process is a weak feeling or weakly immobile if (1) That is, if the average is not dependent on the time and the autocarians between the two
elements depends only on the time between them, not on the time of the first. An important motivation for this Theorem. This means that any weakly stationary process can be decomposed into two terms: moving medium and Process. Thus, for a purely undetectable process, we can zoom in with the ARMA process, the most popular time-
series model. Thus, we can use ARMA models for a weakly stationary process. Intuitively, if the process is not weakly stationary, the parameters of the ARMA models will not be permanent, which means that the permanent model will not be valid. The non-stationary non-standardity of Non-standardity refers to any violation of the original
assumption, but we are particularly interested in the case when weak stationism is disturbed. There are two standard ways to solve it: let's assume that the time-series non-standard component is deterministic, and is modeled explicitly and separately. This is the setting of a stationary trend model, where it is assumed that the model is not a
trend or average function. Transform the data so that it is stationary. The example is different. The trend of StationarityA trend stationary stochastic process decomposes as (2) Here's a deterministic meaning function or trend and stationary stochastic process. The important issue is that we need to specify a model for the mid function: as a
rule, we use a linear trend, perhaps after the conversion (for example). Assuming we know what the trend of stationaryness has, we do a three-step process: Fit model subtract from, receiving model (conclusion, forecasting, etc.) Let's look at a synthetic example of the trend of a stationary process where white noise. We can generate and build
this through the following code: white_noise'lt;-rnorm (100,0.40) trend qlt;-3 (1:100) x_t'lt;-trend white_noise x_t (x_t,type'l',xlab'time',ylab'expression (ylab'expression) 'x't,main'Trend Stationary Process') We can then detrend and build an abbreviated series of mu_t'lt;-lm (x_t'c (1:100)) y_t'lt;-x_t-mu_t'fit''fit.values' (y_t,type'l' The KPSSS test is
real data where we don't know if the stationarity trend holds, we need a way to test it. We can use the KPSS test. This assumes the following model specification: (3) Here is a random walk in a step and is a stationary process. We are interested in the following zero and alternative hypotheses:: : Under null, the trend is stationary since the
occasional walk disappears. Let's look at the example of the U.S. Journal of Gross National Product (GNP). Before you run the test, let's plot the original and detrended series. data qlt;-USeconomic,'log (GNP)' 'suitable zlt;- lm (data-time (data), na.action-NULL) plot (data, 'Log GNP',ylab'log (GNP)))))))))))'s residence'lt;-data-fit''fitted.values'
(resident, main 'Detrended magazine GNP',ylab''Detrended log (GNP)') This area looks pretty linear, so perhaps it's a trend still. Let's look at the abbreviated series. It looks from the second story, The detrended series still has a non-linear average, suggesting that the true trend may not be linear. Let's forget the KPSS test on the original series.
Series. p-value is less than the printed p-value KPSS Test for Trend Stationarity data: KPSS Trend data - 0.44816, Truncation delay option - 4, p-value - 0.01Y, thus rejecting the zero hypothesis about stationization of the trend. In fact, if you try running a KPSS test for the various time series data sets shown by the command data () in R, you
won't find much (I believe any, although I may have missed something) that don't reject the zero hypothesis. The trend is quite rare in practice. Also, even if the stationarity trend holds, it requires the correct model specification for the trend: if the trend is non-linear it can be difficult. This motivates you to find a different approach.
DifferencingStochastic TrendOne, perhaps a more realistic model, is what is described by the alternative kpSS test hypothesis: where the Gaussian casual walk is located and is a stationary process. Then we call the stochastic trend: it describes both the deterministic medium function and the shocks that have a permanent effect. While this is
a more realistic model than the trend stationary model, we need to extract stationary time series from. DifferencingOne way to do it through differencing: that is, take . For a trend stationary model, the difference process is stationary. Then we say that this is the difference of the stationary process. Intuitively you can think of differences as
similar to differentiation in calculus. You can continue to differentiate (different) until the dependence on middle and variance is eliminated, which will lead to a weakly immobile process. For example, let's look at the process in such a way that. Then, lowering the order of polynomy. Doing it again gives that is permanent. Let's look at the
differences in GNP journal data. There is not any obvious non-stationary plot (data), ylab'diff (GNP)', the main 'Difference of the GNP magazine') There is not any obvious unsteady: the average does not seem to differ in time, and does not function auto-covarians, although the latter is harder to verify visually. We can also do an extended Dickie
Fuller test, with an alternative hypothesis not the root of the unit (root unit will mean non-stateability). adf.test (diff (data)) Advanced dickie-fuller test data: diff (data) Dickie-Fuller - -4.4101, Lag Order - 5, p-value - 0.01 alternative hypothesis: stationary Thus, we reject the zero hypothesis of the root of the unit. DiscussionIn this post, we describe
the concepts of stationary and non-stationary time series. We discuss definitions, a weak sense of station, station trend and KPSS test, stochastic tendencies, and differencing. Kwiatkowski, Denis, Peter KB Phillips, Peter Schmidt and Yong Chol Shin. Testing the zero hypothesis of stanciomability against the alternative to the root of the unit.
Diary of Econometrics 54, No 1-3 (1992): 159-178. In mathematics and statistics process (or strict/strictly stationary process or strong/strongly stationary process) is a stochastic stochastic whose unconditional co-distribution of probabilities does not change with the shift in time. Therefore, parameters such as secondary and variance also do
not change over time. Because stationary is the assumption behind many of the statistical procedures used in time-series analysis, unsteady data are often converted to stationary. The most common cause of stationery disturbance is the trend on average, which can be caused either by the presence of the root of the unit or by the deterministic
trend. In the first case, the root of the unit of stochastic shocks have permanent consequences, and this process is not vile. In the latter case of deterministic trend, this process is called a trend-stationary process, and stochastic shocks have only temporary consequences, after which the variable tends to a deterministic (non-constant) average.
The trend of the stationary process is not strictly stationary, but can be easily transformed into a stationary process by removing the underlying trend, which is solely a function of time. Similarly, processes with one or more unit roots can be made stationary through differencing. An important type of non-stationary process that does not include
trend behavior is the cyclostasis process, which is a stochastic process that changes cyclically over time. For many applications, the rigor of the station's sense is too restrictive. Other forms of station are then used, such as a broad sense of station or N-th-order stationarity. Definitions for different types of station are not consistent between the
different authors (see Other terms). Strict sense of stationarity Definition Formally, let the X t display left X_ t right be a stochastic process, and let F X (x t 1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x_ t_{1} F_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ldots ,x_ t_'n'tau) are a cumulative distribution function of unconditional (i.e., without reference to any specific original value) joint distribution X t (display)X_ tright from time to time t 1 , ... , t n and displaystyle t_{1}tau, ice, t_ n'
tau. Then, as they say, X t displaystyle X_t'right - strictly stationary, heavily stationary or stationary, if it :p. 155 F X (x t 1, ... x t n q) - F X (x t 1, ... x t n) for all, t 1, t 1, t ∈ R and for all n ∈ N'displaystyle F_ 'X' (x_ t_{1} (Llpots, x_ t_'n'n'tau) F_ (X) (x_ t_{1}) , ldots,x_ t_)t_ t_{1}) mathbb (R) (text) and for all nin mathbb (Eq.1) Because the taw
display does not affect F X (⋅) displaystyle F_ X (Cdot), F X displaystyle F_ X is not a function of time. Above are examples of two simulated time series processes, one stationary and the other unsteady. Advanced Dickie-Fuller Test Statistics (ADF) (ADF) For each process non-stageivity cannot be rejected for a second process at 5%
significance. White noise is the simplest example of a stationary process. An example of a discrete stationary process in which the sampling space is also discrete (so that a random variable can take up one of the possible N values) is the Bernoulli diagram. Other examples of a discrete stationary process with continuous sampling space
include some autoregressive and moving medium processes that are subs encountered in the automatic regressive average model. Models with a non-trivial auto regressive component can be stationary or unsteady, depending on the parameters, and important unsteady special cases are when the model has specific roots. Example 1 Let Y
displaystyle Y be any scalable random variable, and define the time series X t displaystyle left X_ tright , X t Display X_ I qquad text for all. The X t X_ is then a stationary series of times for which implementations consist of a number of constant values, with different constant value for each implementation. The big number law does not apply in
this case, as the limiting value of the average from a single implementation takes a random value defined by Y displaystyle Y instead of accepting the expected Y displaystyle Y value. Example 2 As another example of a stationary process for which any one implementation has a decidedly silent structure, let Y (displaystyle Y) have an even
distribution of (0, 2 π displaystyle (0.2'pi) and define the series of time X t display X_ t t s cos  (t) for t ∈ . Display-X_ tcos (t'Y) quad (text) for t in mathbb (R) . The X t (left) X_ (right) is then strictly stationary. Nth-order stationarity In Eq.2 distribution of samples of stochistic process n'displaystyle n should be equal to the distribution of samples
shifted in time for all n 'displaystyle n). N-y-order stationarity is a weaker form of stationarity, where it is requested only for all n 'displaystyle n' up to a certain order N displaystyle N. The random process X t (display) (left) X_ (right) is considered stationary N-th-order, :p if: 152 F X (x t 1, ... x t n q) - F X (x t 1, x t n) for all, t 1, t 1, t ∈ R and for all
n ∈ 1 , t_{1} x_ F_ ... LPOT, x_ t_Nyau) F_ X (x_.t_{1}, ldots, x_ t_t_{1}) ,t_'in mathbb R (text) and for all nin 1, ldots,N (Eq.2) Weak or broad sense of stationarity Determining a weaker form of stationary accessories commonly used in signal processing is known as low-feeling stationarity, broadly-sense stationarity (WSS), or Stationarity.
Random WSS processes require only that the first point (i.e. the average) and the auto-kovarians do not change in relation to time and that the second point is finite for all times. Any strictly stationary process, which has a certain average and covariance, is also WSS. 3 :p 299 So, continuous random time process X_, which is WSS has the
following limitations on its average function m X (t) ≜ m_ E  (t) triangle operator name E (X_) and the function of auto-coequaria K X X (t 1, t 2) ≜ E  (X t 1 x x 1) (X t 2 x X (t 2) display style K_ (t_{1} (t_{2})) triangle (operator name (E) (X_ t_{1}-m_ X (t_{1}) (X_ t_{2}-m_ (t_{2}) ( x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . X_ t_{2}-m_)) ∈..................................................................................................................................................................... , 0) for all t 1, t 2 ∈ R E  X (t) 2 qlt; ∞ for all t ∈ R (display) the beginning of the aligned m_ (x)(t)m_'X (t'tau) text for all tau in mathbbR K_ (t_{1}.t_{2} t_{1}) K_ (t_{1}-t_{2} t_{2}.0) X (t) {2}'lt;'lt'infty (text) for all tin
mathbb R (Eq.3) The first property implies that the average function of m X (t) displaystyle m_X (t) should be permanent. The second property implies that the function of the coririan depends only on the difference between t 1 displaystyle t_{1} and t 2 displaystyle t_{2} and should be indexed only by one variable, not by two variables. 159 :p,
thus, instead of writing, K X X (t 1 - t 2, 0) (display) ! K_ (t_{1}-t_{2}.0) notation is often reduced by replacing No.1 and t2 t2 display tau t_{1}-t_{2}:K X X () ≜ K X X X (t 1 t 2, 0) displaystyle K_ XX K_ (t_{1}-t_{2}.0 ≜ t_{2} t_{1} We're not the one who's been to the one, we're not going to the people of the year. He said, he said, he said, he said.
He said, he said, he said, he said. (display style) ! R_ X (t_{1}.t_{2}) R_ X (t_{1}-t_{2}.0) X triangle R_ (Tau). The third property states that the second point should be finite for any time t .displaystyle t. . The motivation behind the broad station affiliation is that it puts the time series in the context of Hilbert's space. Let H Gilbert's space generated
by x(t) (i.e. closing a set of all linear combinations of these random variables in Hilbert's space of all square random variables in a given probability space). According to the positive certainty of the function of the auto-covarians, bochner's theorem suggests that there is a positive measure μ display on the real line is such that H is isomorphic for
the subspace of Gilbert L2 (μ), generated by e2πiξ⋅t. This then gives the following Fourier-type decomposition for continuous continuous stationary stochastic process: there is a stochastic process and ξ omega display with orthogonal increments, such that, for all t 'displaystyle t' x t - ∫ e - 2 π i '⋅ t', displaystyle X_'t'int e'-2'pi i'lambda 'cdot t',
d'omega th lambda), where integral on the right side is interpreted in a suitable (Riemann) sense. The same result takes place for a discrete stationary process, with the spectral measure now determined on the unit circle. When processing WSS random signals with time-invariant linear filters (LTI), it's helpful to think of correlation function as a
linear operator. Since it is a circulant operator (depends only on the difference between the two arguments), its eigenfunctions are exponential complex Fourier. In addition, because the eigenfunctions of LTI operators are also complex exponential indicators, WSS LTI random signal processing is highly edjected - all calculations can be done in
a frequency domain. Thus, the WSS assumption is widely used in signal processing algorithms. Determining a complex stochistic process When X_ autocosayance function is defined as K X X (t 1, t 2) - E  (X t 1 - m X ( t 2 ̄ ) displaystyle K_'XX' (t_{1}.t_{1} t_{2} m_ t_{1} X_ t_{2} m_ t_{2} X_) ) required, to the function of pseudo-car-car-cararians
J X X (t 1, t 2) - E  (X t 1 - m X ( t 1 ) (X t 2 - m X ( t 2 t_{1} J_) t_{2}) - operator (X_ t_{1}-m_ (t_{1}) (X_-t_{2}-m_ X (t_{2}) depends only on the delay in time. In formulas, X t (display) X_ (left) is WSS, if m x (t) m x (t) for all q ∈ R K X X (t 1, t 2) - K X X (t 1 t 2, 0) for all t 1, t 2 ∈ R J X X (t 1, t 2) - J X (t 1 - t 2, 0) for all t 1 t 1 , t 2 ∈ R E  X (t) 2
qlt; ∞ for all t ∈ R (display) (beginning) m_ (x) (t) m_ (t'tau) (t'tau) (text) for all K_ (in matebbe (t_{2} t_{1} R) (K_. XX) (t_{1}.t_{2}) 0) text for all t_{1}.t_{2} in mathematics (J_ t_{1}.t_{2}) J_ (t_{1}-t_{2} t_{2}.0 t_{1} (t) {2} (text) for all tin mathbb R (Eq.4) The Joint Station Value Concept can be extended to two hundred-story processes. Joint
stationarity of strict meaning Two stochastic process (X t) Y_ displaystyle (left) X_ (right) and Y t-feeling stationary, if their joint cumulative distribution F X Y (x t 1, ... x t_{1} x_ t m, y t. . . . F_............................................................................................................................................................... ,y_ t_) F X Y (F X Y, F X Y, F X Y , ∈, ∈ N F_ 'XY'
(x_ ,t_{1}), 'ldots', x_ 't_,y_ 't_{1}','y_t_'n') F_ (XY) (x_ t_{1}, , x_t_ y_ t_{1}, y_t_, t_{1}, '''' t_,t_{1}' 't_', 't_' ,n'in 'mathbb'N' (Eq.5) ' 'th-order stationar' X_ity Y t () Y_ (:p) (M-N-th-order, 159 F X Y (x t 1 , ... , x t m, y t 1 , ... , y t n ), ... , , ' '1', '1', '... , y t n ', t 1, ... , t m, (1 , . . . . . . . . . ∈ ∈ ∈ x_ F_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



(t_{1}), x_ t_ y_,t_{1},,ldots, y_ t_'n'), F_ XY (x_t_{1}, x_ t_ y_ t_{1} ''y_'t_' t_{1}) 'ldots,t_'m',t_{1}',',ldots,t_'n'n'in 'mathbb'R' '1', '1', '1', 'Eq.6', '1', '1', 'Eq.6' X_ Y_ 'Y t' Y_ ''' , ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' K X Y (t 1 , t
2 ) - E  ( X t 1 - m X (t 1 ) (Y t 2 - m Y (t 2 t_{2} t_{1} K_ X_) (t_{1}-m_ (t_{1}))t_{1}) (Y_-t_{2}-t_{2}-m_ t_{2} t_{2} t_{2}) It's not going to be enough. : м ∈ х ∈ ( т . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . t 2 ) - K X X (t 1 t 2 , 0 ) ' t 1 't 1 't 2' ∈ R K Y (t 1 , t 2 ), 0 ) T 1 , t 2 ∈ R K X Y (t 1 , t 2 ) - K X Y (t 1 - t 2 , 0 ) ' t 1 , t 2 ∈ R (m_ m_) (R) m_ (t) m_ (t'tau) () R) K_(xx) (t_{1} ,t_{2}) K_ XX (t_{1}-t_{2}.0) t_{2} t_{1} - K_ t_{1} K_ (t_{1}-t_{2}) t_{2},0) - t_{1} t_{2} 'K_ 't_{2}'t_{1}) K_ 'XY' (t_{1}-t_{2}.0) 't_{1} ,t_{2} in
mathbbR (Eq.7) Relationship between stationary types If the stochastic process is N-th-order still, this is this also M-th-order stationary for all M ≤ N'displaystyle M'leq N. . If the stochastic process is stationary second-order (N No. 2 q displaystyle N »2) and has the final second moments, then it is also widely meaning stationary. If the stochastic
:p is stationary, it is not necessarily a second-order stationary. If the stochastic process :p a strict meaning and has the final second moments, it has a broad meaning still. 3.:p. 299 If the two stochastic processes are joint (M and N)-th-order stationary, this does not guarantee that individual processes are stationary M-th- respectively N-th-order.
No 2:p 159 Another terminology used for station types, except for strict stationiness, can be quite mixed. Some examples follow. Priestley uses still up to order m if conditions similar to those given here for a broad sense of stationarity apply relating to moments prior to the order of M. 45 Thus a broad sense of stationarity would be equivalent to
still order 2, which differs from the second-order stationarity definition given here. Honarcha and Kaers also use the assumption of stationaryness in the context of multivolume geostatistics, where higher n-point statistics are considered stationary in the spatial area. Tahmazebi and Sahimi presented an adaptive methodology based on Shannon
that can be used to model any non-stationary systems. Difference One way to make some time series immobile is to calculate the differences between successive observations. This is known as differencing. Transformations such as logarites can help stabilize the time series. Differences can help stabilize the average time of the series by
removing changes in the time-series level, and thus eliminating trends and seasonality. One way to define non-stationary time series is to plot acF. For stationary time series, the ACF will drop to zero relatively quickly, while the ACF of unsteady data is slowly decreasing. Cm. also the Levi's Process Stationary Ergodic Process Inerer-Hinchin
theorem of the Ergodicity Statistical Regularity AutoCorrelation Whittle Probability Links - Gagniuc, Paul A. (2017). Markov Chains: From theory to implementation and experimentation. USA, New Jersey: John Wylie and sons. 1-256. ISBN 978-1-119-38755-8. a b c d e f g Park,Kun Il (2018). Probability basics and stochastic processes with
communication applications. Springer. ISBN 978-3-319-68074-3. b Ionut Florescu (November 7, 2014). Probability and stochastic processes. John Wylie and sons. ISBN 978-1-118-59320-2. Priestley, M.B. (1981). Spectral analysis and a series of time. Academic press. ISBN 0-12-564922-3. Priestley, M.B. (1988). Non-linear and unsteady
analysis of time. Academic press. 0-12-564911-8. Honarcha, M.; Kaers, J. (2010). Stochastic simulation simulation Patterns using distance-based pattern modeling. Mathematical geosciences. 42 (5): 487–517. doi:10.1007/s11004-010-9276-7. Tahmazebi, P.; Sahimi, M. (2015). Reconstruction of unsteady disordered materials and media:
Transforming the watershed and the cross-correlation function (PDF). Physical review E. 91 (3): 032401. doi:10.1103/PhysRevE.91.032401. PMID 25871117. 8.1 Station and different OTexts. www.otexts.org. Received 2016-05-18. Further reading by Enders, Walter (2010). Applied econometric time series (third method). New York: Wylie. 53-
57. ISBN 978-0-470-50539-7. Estrovich, I.; Coyle, J. L.; Seydic, E (2015). Effect of increased fluid viscosity on stationary EEG signal characteristics in healthy adults. Brain research. 1589: 45–53. doi:10.1016/j.brainres.2014.09.035. PMC 4253861. PMID 25245522. Hindman, Athanasopoulos (2013). Prediction: Principles and practice. The
swelling. external links Spectral Random Function Decomposition (Springer) extracted from stationary time series example. stationary time series meaning. stationary time series test. stationary time series dataset. stationary time series autocorrelation. stationary time series python. stationary time series analysis. stationary time series
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