
Android oreo send sms programmatically

Continue

https://ggtraff.ru/123?keyword=android+oreo+send+sms+programmatically

With so many different ways of communicating (I � on you Google Developers), you could find a strange talk about integrating an old-school SMS service into your app. Admittedly, aside from the usual 2-step verification and related services, there are some areas on the planet � where data is still rare and/or very
expensive, so if we want to solve the next billion, most of these new users are in emerging markets so SMS can be a good alternative or at least something to consider. TL;DR: The project is available on GitHub. Note and review� gives you the rest. With relatively little effort, you can have your app via SMS as a data
source, while providing a nice UX user interface, a user interface for material design (beats simple text�). Note: I use project Bus-eta as an example of implementation, you can read more about it in my previous post. I also created a simplified and easy-to-understand project, check available on GitHub.OverviewAsk for
SMS permissions (like manifest and running time)Send SMS via the SmsManagerSetting system to BroadcastReceiver to listen and process for incoming SMS.1. Request permission We must ask permission in order to To make our app work with SMS, Start with ads in your AndroidManifestNow our users before M will
be asked to accept these permissions when they decide to install the app through PlayStore.But as the launch in Android 6.0 (API level 23), permissions must be requested at the time of execution, so we still have to make our zefir app ready, otherwise a large percentage of users will not be able to use sms, resulting in
very frustrating and effortless. Sending an SMS when you don't ask permission in MarshmallowSo whenever you need to use SMS, check if the app has permission, if not, request: It's important not to ask in advance, I personally hate it when I start a new app and I get asked for random permissions, sometimes I don't
even use the app, so don't be lazy and just ask when it's necessary. The permission request will be given to the user by the subsequent AlertDialog:Transport ETA system with a request to allow an SMS message during execution. As you can see the message given by the system is pretty strong, if it's just for your users
why your app will need to access SMS, I would recommend you show a simple explanation in advance to avoid some of your more paranoid users (like me) to deny and make the whole feature useless. Give the user some context, simply: By showing a simple explanation in advance With minimal effort, our users are
presented with simple but important information. Now they why they should allow the app to access such sensitive data. Once the user decides that we have to process the resolution response:Note: Like the startActivityForResult call, SMS_PERMISSION_CODE is just a permanent variable, it must comply with both
asking permission, and processing processing Sending SMS through our app Now that we have the necessary permissions we will use the default SmsManager in order to send our text: Voil! Our app will use the default device's sms messenger app to send sms-� �. It is considered good practice to let the user know
the normal fees apply, our app is simply dolled up to the version of the usual/default process. �3. Listening to incoming SMSNowadays apps rarely have a single-track flow of communication, so in order to listen to incoming SMS we have to customize our custom BroadcastReceiverBroadcast receiver, which listens to
incoming sms'sOf of course, you could always create a simple BroadcastReceiver and logic present on your activities, but I prefer to keep this wrapper under the custom SmsBroadcastReceiver and only when transferring. Avoiding ugly code floating around and unnecessary connection. Looking at line 47 of the
aforementioned essence you can see that I have implemented some more stringent conditions when the listener is called, it suits my particular case, I only want to discover sms that come from a certain number and have the initial model of the SMS@CARRIS that is transmitted through the designer: So we can ignore
any other incoming sms, Now we need to register the ou receiver, in my case I want to listen while the app is open, so I will register in my application class The positioning step assigns listener, will only be called if the conditions are met:You can also register your transmission receiver through the manifest by adding the
following line to your AndroidManifest: And adjust all the logic within your own BroadcasReceiver, so you keep all your business logic wrapped inside your own class. In my case I want to have more control and adaptability, but using the manifest is just like registering in an app. My actual project has a controller that
handles a lot of basic edge cases that can pop up with these custom implementations but are out of scope of the article. When using BroadcastReceivers, beware of priority settings (but don't abuse it �). Links:Hello! My name is Joaquim Lei, I am currently based in Copenhagen, Denmark.If you liked this hit article that
�, if you know who can extract value, please share, I will look for my opinion and suggestions in the comments, feedback is always welcome. If you want to see more content from me, 	 button to follow! Manages SMS operations such as data, text and PDU SMS messages. Get this object by calling the static
getDefault method. To create a copy of SmsManager associated with a specific subscription ID, call (int). This is commonly used for devices that support multiple active subscriptions at the same time. For information on how to behave like the default SMS app on Android 4.4 (API level 19) and above, see Telephony.
Telephony. SmsManager.FinancialSmsCallback call back to provide asynchronous sms messages for the financial application. Line createAppSpecificSmsToken (PendingIntent intention) Create a single use application specific incoming SMS request to call the package. The line
createAppSpecificSthSTokenWithPackageInfo (String prefixes, pendingIntent intentions) Create one application using a specific incoming SMS request to call the package. Divide Message (String text) Divide the text message into several fragments, no larger than the maximum SMS size. Void
downloadMultimediaMessage (Context Context, String LocationUrl, Uri contentUri, Bundle configOverrides, PendingIntent downloadIntent) Download mmS message from the carrier at this location URL Note: This method will never trigger SMS dialogue. GetCarrierConfigValues kit () Get operator-dependent mmS
configuration values. static SmsManager getDefault () Get SmsManager associated with the default subscription ID. static int getDefaultSubscriptionId () Get the default sms subscription ID. Static SmsManager getSmanagerForSubscriptionId (int subId) Get a copy of SmsManager associated with a specific subscription
ID. emptiness getSmsMessagesForFinancialApp (Bundle params, Artist, SmsManager.FinancialScallback callback) Get SMS messages to call. GetSmscAddress () Receives SMSC from (U)SIM. getSubscriptionId () Get a related subscription id. void injectSpsPdu (byte, line format, PendingIntent) will ingest SMS PDU
into the android app platform. invalid sendDataMessage (String destinationAddress, String scAddress, short destinationPort, data byte, PendingIntent sentIntent, PendingIntent deliveryIntent) Send SMS based on data to a specific application port. invalid sendMultimediaMessage (Context Context, Uri contentUri, String
locationUrl, Bundle configOverrides, PendingIntent sentIntent) Send MMS message Note: This method will never trigger SMS disambiguation dialogue. invalid sendMultipartTextMessage (StringAddress, String scAddress, ArrayList'lt;String)lt; parts, ArrayList'lt;PendingIntents, ArrayList'lt;PendingIntents; deliveryIntents)
Send a multi-part text based on SMS. Void sendMultipartTextMessage (StringAddress, Line scAddress, Parts List, List of Parts, List of zlt;PendingIntents, List of qlt;PendingIntents, deliveryIntents, deliveryIntents list, long messageId) Send a multi-part text based on SMS. Void sendMultipartTextMessage (StringAddress,
String scAddress, Parts List, List, List, List, qlt;PendingIntents, DeliveryIntents, PackageName Line, Line Аналогичный метод, как #sendMultipartTextMessage (String, String, ArrayList, ArrayList, ArrayList)</PendingIntent> </PendingIntent> </String> </PendingIntent> </PendingIntent>
</String> </PendingIntent> </PendingIntent> </String> </String> С дополнительным аргументом. аргументом. PendingIntent deliveryIntent, long messageId) Send sms based on text. invalid sendTextMessage (String destinationAddress, String scAddress, String text, PendingIntent,
PendingIntent deliveryIntent) Send sms based on text. invalid sendTextMessageWithoutPersisting (String destinationAddress, String scAddress, String Text, PendingIntent, PendingIntent deliveryIntent) Send text-based TEXT without texting it to the SMS provider. boolean setSmscAddress (String smsc) sets the SMSC
address on (U)SIM. From the java.lang.Object Object class, the clone creates and returns a copy of this object. boolean (Object obj) indicates whether any other object is equal to this. invalid completion () Is called by the garbage collector at the facility when the garbage collection determines that there are no more
references to the object. The final class of the getClass returns the time class of the subject. int hashCode () Returns the hash code value to the object. the final invalid to notify () will wake up one thread that is waiting on the monitor of this object. ToString returns the view of the object line. The final expectation of
emptiness (long time out, int nanos) triggers anticipation of the current thread until another thread triggers the notification method () or the notifyAll method for that object, or some other thread interrupts the current thread, or a certain amount of real time has passed. The final expectation of emptiness (long time) triggers
the wait for the current thread until another notification method () or notifyAll method has been triggered for that object, or a certain amount of time has passed. the final expectation of emptiness () causes the current thread to wait until another thread triggers the notification method () or the notifyAll method for that object.
Public Static Static Line EXTRA_MMS_DATA Intention additional name for MMS sending the result data in the type of massif te Constant Value: android.telephony.extra.MMS_DATA the public static final line EXTRA_MMS_HTTP_STATUS Intention an additional name for the status code HTTP for the failure of MMS
HTTP in whole types Standing value: android.telephony.extra.MMS_HTTP_STATUS public static closing line MMS_CONFIG_ALIAS_ENABLED Included alias : aliasEnabledd public static final String MMS_CONFIG_ALIAS_MAX_CHARS Max alias count (int type) Permanent value: aliasMaxChars public static final Row
MMS_CONFIG_ALIAS_MIN_CHARS Min alias count (int type) Permanent value: aliasMinChars public static final line MMS_CONFIG_ALLOW_ATTACH_AUDIO Lee audio allowed to be attached to MMS messages (boulean type) static final line MMS_CONFIG_APPEND_TRANSACTION_ID should I attach a
transaction ID to THE MMS WAP Push M-Notification.ind at the URI content site when building a download URL of the new MMS (Galilee type) type) Value: EnabledTransID Public Static Final Gateway Number String MMS_CONFIG_EMAIL_GATEWAY_NUMBER Email (line type) Permanent value: emailGatewayN
Public Static Static Final Line MMS_CONFIG_GROUP_MMS_ENABLED Included Is the MMS Group for current media (type boolean) Permanent value: enableGroupMms Public Static Static Final Line MMS_CONFIG_HTTP_PARAMS List of Heads http to Add in MMS HTTP : http Params Public Static Final String
MMS_CONFIG_HTTP_SOCKET_TIMEOUT MMS HTTP Nest Time Out in Milliseconds (int type) Permanent value: httpSocketTimeout Public Static Final String MMS_CONFIG_MAX_IMAGE_HEIGHT Max MMS Image Height (int type) Permanent Value: maxImageHeight public static final string
MMS_CONFIG_MAX_IMAGE_WIDTH Max MMS image width (int type) Permanent value: maxImageWidth public static static final line MMS_CONFIG_MAX_MESSAGE_SIZE Max MMS message size in bytes (int type) Permanent value : maxMessageSize Public Static Final String
MMS_CONFIG_MESSAGE_TEXT_MAX_SIZE Max Text Size Message (int type) Permanent value: maxMessageTextSize Public static final line MMS_CONFIG_MMS_DELIVERY_REPORT_ENABLED Is the report of the delivery of MMS (Galilee type) Permanent value:MMSDeliveryReports Public Static Final String
MMS_CONFIG_MMS_ENABLED Included Whether MMS for Current Carrier (Bulean Type) Permanent Value : ?MMS Public Static Final String MMS_CONFIG_MMS_READ_REPORT_ENABLED Lee MMS Read Report Included (Galilee Type) Permanent Value : enableMMSReadReports Public Static Final Row
MMS_CONFIG_MULTIPART_SMS_ENABLED Lee Multi-Private SMS Included (Bulean Type) Permanent Value: enableMultipartSMS Public Static Final Line MMS_CONFIG_NAI_SUFFIX suffix for application to NAI headline value for MMS :Suffix public static final line MMS_CONFIG_NOTIFY_WAP_MMSC_ENABLED
If included, M-NotifyResp.in should be sent to THE : : usedNotifyWapMMSC Public Static Final Line MMS_CONFIG_RECIPIENT_LIMIT Limit recipients of MMS messages (type) Permanent value: recipient public static line MMS_CONFIG_SEND_MULTIPART_SMS_AS_SEPARATE_MESSAGES :
sendMulMultipartsAsSeparateMessages public static final line MMS_CONFIG_SHOW_CELL_BROADCAST_APP_LINKS If true, show cell broadcasts (amber alert) in SMS settings. Some carriers don't want this shown. (Bulean type) Permanent config_cellBroadcastAppLinks Public Static Final String

MMS_CONFIG_SMS_DELIVERY_REPORT_ENABLED Is the REPORT on SMS Delivery (Galilee Type) Permanent Value: EnableSDeliveryReports Public Static Final Line MMS_CONFIG_SMS_TO_MMS_TEXT_LENGTH_THRESHOLD Some Some require SMS to be converted to MMS when the length of text
reaches this threshold (type int) Permanent value: smsToMmsTextLengthThreshold public static final line MMS_CONFIG_SMS_TO_MMS_TEXT_THRESHOLD When the number of parts of multi-component SMS reaches this threshold, it should be converted into MMS (int type) Permanent value:
smsToMmsTextThreshold public static line MMS_CONFIG_SUBJECT_MAX_LENGTH Max : maxSubjectLength public static final MMS_CONFIG_SUPPORT_HTTP_CHARSET_HEADER whether MMSC supports the charset field in the title Content-Type. If this is false, then we do not add charset to Content-Type
Permanent value: supportHttpCharsetHeader public static closing line MMS_CONFIG_SUPPORT_MMS_CONTENT_DISPOSITION Should we expect in MMS PDU (blank type) Permanent value: supportMmsConDistent public static final line MMS_CONFIG_UA_PROF_TAG_NAME UA Prof title : uaProfTagName public
static closing line MMS_CONFIG_UA_PROF_URL UA Profile : uaProfUrl Public Static Final Line MMS_CONFIG_USER_AGENT User-Agent Headline Value for MMS HTTP Query (Type Row) Permanent Value: userAgent Public Static Finale Int MMS_ERROR_CONFIGURATION_ERROR Permanent Value: 7
(0x0000007) Public Static Final int MMS_ERROR_HTTP_FAILURE Permanent Value : 4 (0x0000004) public static finale int MMS_ERROR_INVALID_APN Permanent value: 2 (0x0000002) public static finale int MMS_ERROR_IO_ERROR Constant Value : 5 (0x00000005)) public static finale int
MMS_ERROR_NO_DATA_NETWORK Constant Value: 8 (0x0000008) public static finale int MMS_ERROR_RETRY Constant Value: 6 (0x0000006) Public Static Finale int MMS_ERROR_UNABLE_CONNECT_MMS Constant Value : 3 (0x0000003) Public Static Finale Int MMS_ERROR_UNSPECIFIED Permanent
Value: 1 (0x0000001) Public Static Final Int RESULT_BLUETOOTH_DISCONNECTED Failed Sending Via Bluetooth because Bluetooth is disabled permanent value: 27 (0x0000001b) public static finale int RESULT_CANCELLED Failed, because the operation was canceled Permanent value: 23 (0x00000017) public
static finale Int RESULT_ENCODING_ERROR failed due to a coding error Permanent value : 18 (0x00000012) public static final int RESULT_ERROR_FDN_CHECK_FAILURE because FDN included. Permanent value: 6 (0x00000006) public static finale Int RESULT_ERROR_GENERIC_FAILURE Total failure causes
permanent value: 1 (0x0000001) public static finale int RESULT_ERROR_LIMIT_EXCEEDED Failed because we have reached the limit of the sending queue. Permanent value: 5 (0x00000005) static final int RESULT_ERROR_NONE no mistake. Permanent value: 0 (0x000000000) public static final int
RESULT_ERROR_NO_SERVICE because the service is now being Permanent value: 4 (0x00000004) public static final int RESULT_ERROR_NULL_PDU Failed, because no PDU provided a permanent value: 3 (0x00000003) public static final Int RESULT_ERROR_RADIO_OFF Failed, because the radio was clearly
turned off by The Permanent Value: 2 (0x0000002) publicly static final int RESULT_ERROR_SHORT_CODE_NEVER_ALLOWED Failed, because the user denied this app ever send premium short codes. Permanent value: 8 (0x000000008) public static final int RESULT_ERROR_SHORT_CODE_NOT_ALLOWED
failed because the user denied sending this short code. Permanent value: 7 (0x0000000007) public static finale int RESULT_INTERNAL_ERROR failed due to internal error Standing value: 21 (0x0000000015) public Static Finale Int RESULT_INVALID_ARGUMENTS Failed Due to Invalid Arguments Permanent Value:
11 (0x00000bb) Public Static Final int RESULT_INVALID_BLUETOOTH_ADDRESS Unsuccessful Sending Via Bluetooth, because the address of the Bluetooth device is invalid Permanent value: 26 (0x0000001a) public static final int RESULT_INVALID_SMSC_ADDRESS failed due to invalid smsc address Permanent
value : 19 (0x000000013) public static finale int RESULT_INVALID_SMS_FORMAT Failed, because the sms format is not valid Permanent value: 14 (0x000000e) public static finale Int RESULT_INVALID_STATE failed due to invalid state Permanent value: 12 (0x0000000 0c) Public static final int
RESULT_MODEM_ERROR failed due to modem error Standing value: 16 (0x00000010) public static final int RESULT_NETWORK_ERROR failed due to network error Permanent value : 17 (0x000000011) public static final int RESULT_NETWORK_REJECT failed due to the failure of the network Permanent value: 10
(0x00000a) public static final int RESULT_NO_BLUETOOTH_SERVICE - Unsuccessful sending via Bluetooth, because Bluetooth service is not available Permanent value: 25 (0x00000019) public static final int RESULT_NO_DEFAULT_SMS_APP Install BroadcastReceiver to indicate that there is no default sms
application. Permanent value : 32 (0x000000020) public static finale Int RESULT_NO_MEMORY Failed because there is no memory Permanent value: 13 (0x00000d) public static final int RESULT_NO_RESOURCES failed, because No Resources Permanent Value: 122 (0x000000016) Public static finale int
RESULT_OPERATION_NOT_ALLOWED failed because the operation is not allowed Permanent value: 20 (0x0000014) public static finale Int RESULT_RADIO_NOT_AVAILABLE failed because the radio wasn't available Value : 9 (0x00000009) public static final int RESULT_RECEIVE_DISPATCH_FAILURE SMS get a
dispatch failure. Permanent value: 500 (0x00001f4) public static final int RESULT_RECEIVE_INJECTED_NULL_PDU SMS receive an injected zero PDU. Permanent value: 501 (0x00001f5) public static final int RESULT_RECEIVE_NULL_MESSAGE_FROM_RIL SMS received zero message from the radio interface
layer. Permanent value: 503 (0x000001f7) public static final int int SMS messages get faced with the exception of running time. Permanent value: 502 (0x000001f6) public static finale int RESULT_RECEIVE_SQL_EXCEPTION SMS get faced with the exception of S'L. Permanent value: 505 (0x000001f9) public static
final int RESULT_RECEIVE_URI_EXCEPTION SMS receive a uri review exception. Permanent value: 506 (0x000001fa) public static final int RESULT_RECEIVE_WHILE_ENCRYPTED SMS short code received while the phone is encrypted. Permanent value: 504 (0x000001f8) public static final int
RESULT_REMOTE_EXCEPTION Installed by BroadcastReceiver to indicate a remote exception when processing a message. Permanent value: 31 (0x00000001f) public static finale int RESULT_REQUEST_NOT_SUPPORTED failed because the request is not supported by Permanent Value: 24 (0x00000018) public
static finale int RESULT_RIL_CANCELLED Request was cancelled. Permanent value: 119 (0x0000077) public static final int RESULT_RIL_ENCODING_ERR SMS message was not encoded properly. Constant value: 109 (0x000006d) public static final int RESULT_RIL_INTERNAL_ERR Modem encountered an
unexpected scenario of error in processing the request. Permanent value: 113 (0x000000071) public static final int RESULT_RIL_INVALID_ARGUMENTS Radio received invalid arguments in the request. Permanent value: 104 (0x00000068) public static finale int RESULT_RIL_INVALID_MODEM_STATE Radio can not
handle the request in the current modem state. Permanent value: 115 (0x000000073) public static final int RESULT_RIL_INVALID_SMSC_ADDRESS specified SMSC address was invalid. Permanent value: 110 (0x000006e) public static final int RESULT_RIL_INVALID_SMS_FORMAT Radio returned a bug indicating
an invalid sms format. Permanent value: 107 (0x000006b) public static finale int RESULT_RIL_INVALID_STATE Radio returned an unexpected request for the current state. Permanent value: 103 (0x0000067) public static final int RESULT_RIL_MODEM_ERR RIL Supplier received an unexpected or incorrect answer.
Permanent value: 111 (0x00006f) public static finale RESULT_RIL_NETWORK_ERR Radio got an error from the network. Permanent value: 112 (0x0000070) public static finale RESULT_RIL_NETWORK_NOT_READY Network is not ready to comply with the request. Permanent value: 116 (0x0000074) public static
finale int RESULT_RIL_NETWORK_REJECT Sms request was rejected by the network. Permanent value: 102 (0x0000066) public static finale int RESULT_RIL_NO_MEMORY Radio did not have enough memory to handle the request. Permanent value: 105 (0x0000069) public static final int There are not enough
resources to process the request. Permanent value: 118 (0x0000076) public static final int RESULT_RIL_OPERATION_NOT_ALLOWED Radio reports that the request is not allowed. Permanent value: 117 (0x0000075) public static finale int RESULT_RIL_RADIO_NOT_AVAILABLE Radio not not not Or reset.
Permanent value: 100 (0x00000064) public static RESULT_RIL_REQUEST_NOT_SUPPORTED int if the request was not supported by the radio. Permanent cost: 114 (0x000000072) public static finale int RESULT_RIL_REQUEST_RATE_LIMITED Radio denied the operation due to excessive requests. Permanent
value: 106 (0x000006a) public static finale int RESULT_RIL_SIM_ABSENT Radio failed to establish the place where cdMA subscription can be received because SIM or RUIM is missing. Permanent value: 120 (0x000000078) public static final int RESULT_RIL_SMS_SEND_FAIL_RETRY Radio failed to send sms and
needed to be repeated. Permanent value: 101 (0x0000065) public static finale int RESULT_RIL_SYSTEM_ERR Radio faced a platform or system error. Permanent value: 108 (0x00000006c) public static finale int RESULT_SMS_BLOCKED_DURING_EMERGENCY Unsuccessful dispatch during emergency call
Permanent value: 29 (0x0000001d) public static finale int RESULT_SMS_SEND_RETRY_FAILED Failed to send sms retry Value: 30 (30 (30 (30 (30 (30 (300x0000001e) Public static final int RESULT_SYSTEM_ERROR failed due to a system error Permanent value: 15 (0x000000f) public static final int
RESULT_UNEXPECTED_EVENT_STOP_SENDING failed sending because the user denied or canceled the dialogue displayed for premium shortcode sms or with a limited sms rate. Permanent value: 28 (0x0000001c) public static finale int STATUS_ON_ICC_FREE Free Space (TS 51.011 10.5.3 / 3GPP2 C.S0023
3.4.27).: 0 (0x00000000) public static finale int STATUS_ON_ICC_READ Received and Read (TS 51.011 10.5.3 / 3GPP2 C.S0023 3.4.27). : 1 (0x000000001) public static finale int STATUS_ON_ICC_SENT Stored and sent (TS 51.011 10.5.3 / 3GPP2 C.S0023 3.4.27). Permanent value: 5 (0x0000005) public static
finale int STATUS_ON_ICC_UNREAD Received and Unread (TS 51.011 10.5.3 / 3GPP2 C.S0023 3.4.27). Permanent value: 3 (0x0000003) public static finale int STATUS_ON_ICC_UNSENT Store and unsent (TS 51.011 10.5.3 / 3GPP2 C.S0023 3.4.27). Permanent value: 7 (0x000000007) public line
createAppSpecificSThoken (PendingIntent intentions) Create a single application using a specific incoming SMS request to call the package. This method returns a token that, if included in a subsequent incoming SMS message, will cause the intention to be sent with SMS data. The token is only good for one use, after
receiving an SMS containing a token, all subsequent SMS messages with token will be sent as usual. An app can only have one request at a time if the app already has a request until it is replaced by a new query. Note: This method never will trigger the SMS disambiguation dialogue. If this method is called on a device
that has multiple active subscriptions, this smsManager instance was created with getDefault(and there is no default subscription, subscription ID associated with this will be INVALID, which will lead to the completion of a subscription operation related to the logical slot 0. Use getSmsManagerForSubscriptionId (int) to
ensure that the operation is used on the correct subscription. PendingIntent's Intent Options returns a token line to be included in an SMS message. The symbol will be 11 characters in length. See also: Telephony. Sms.Intents.getMessagesFromIntent (Intention) public line createAppSpecificSmsTokenWithPackageInfo
(String Prefixes, PendingIntent Intentions) Create one application using a specific incoming SMS request to call the package. This method returns a token that, if it is included in the subsequent incoming SMS message, and the SMS message has a set-top box from this list of prefixes, the provided intention will be sent
with SMS data to the call package. The token is only good for one use within a reasonable period of time. After receiving SMS messages containing a token, all subsequent SMS messages with a token will be sent as usual. An app can only have one request at a time if the app already has a request until it is replaced by
a new query. Note: This method will never trigger a dialogue SMS disambiguation. If this method is called on a device that has multiple active subscriptions, this smsManager instance was created with getDefault and is not defined by default subscription, the subscription ID associated with that message will be INVALID,
leading to the completion of a subscription transaction associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to ensure that the operation is used on the correct subscription. Line prefix options: this is a list of line prefixes separated by REGEX_PREFIX_DELIMITER. The corresponding SMS
message must have at least one of the consoles at the beginning of the message. This value can be zero. PendingIntent's intention: this intention is sent when you receive the appropriate SMS message. This value cannot be zero. Returns the string token to be included in the SMS message. This value can be zero.
Public ArrayList'lt;String'gt; divides the text of the message into several fragments, no larger than the maximum size of SMS messages. Line text options: the original message. It shouldn't be zero. Returns ArrayList'lt;String'gt; ArrayList lines that, in order, make up the original message. Throws IllegalArgumentException if
the text is zero. Public void downloadMultimediaMessage (Context Context, String locationUrl, Uri contentUri, Bundle configOverrides, PendingIntent downloadedIntent) Download MMS message from the carrier on this location URL Note: This method will never trigger sms disambiguation dialogue. If this method is called
on a device that has multiple active subscriptions, this instance of SmsManager created with getDefault(and there is no default subscription defined by the user, The ID associated with this message will be INVALID, which will lead to the completion of the subscription operation associated with the logical slot 0. Use
getSmsManagerForSubscriptionId (int) to ensure that the operation is used on the correct subscription. Context Context: Location of the context of the Url String app: The location URL of the mmS message to be downloaded, usually derived from the MMS WAP push notification contentUri Uri: the uri content to which the
downloaded Pdu will be written will be written configOverrides Bundle: the message configuration values for override to download the message. downloadedIntent PendingIntent: if not NULL this PendingIntent is broadcast when the message is downloaded, or the download fails Throws IllegalArgumentException, if
locationUrl or contentUri empty public kit getCarrierConfigValues () Get the carrier depends on the MMS configuration values. Note: This method is intended for internal use by operator applications or telephony frames and will never trigger a sms-disbigation dialogue. If this method is called on a device that has multiple
active subscriptions, this smsManager instance was created with getDefault and is not defined by default subscription, the subscription ID associated with that message will be INVALID, leading to the completion of a subscription transaction associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to
ensure that the operation is used on the correct subscription. Returns a set of package keys/values that contains MMS configuration values or an empty kit if they cannot be found. This value cannot be zero. Public static SmsManager getDefault () Get a SmsManager associated with the default subscription ID. The
instance will always be associated with the default subscription ID, even if the default subscription ID changes. Note: For devices that support multiple active subscriptions at the same time, SmsManager will track a subscription set by the user as the default SMS subscription. If the user doesn't set the default,
SmsManager can start an action to start a subscription camouflage dialogue. Most operations will not be completed until the user has a subscription that is linked to the operation. If a user cancels a conversation without choosing a subscription, one of the following cases will occur, depending on the target version of the
SDK app. For compatibility purposes, if the SDK target is 28, the operation will not be completed. Note: If this method is used to perform an operation on a device that has multiple active subscriptions, the user has not set the default SMS subscription, and the operation is performed while the app is not in the foreground,
the dialogue Sms will not be shown. The result of the operation will end as if The camouflage dialogue has been canceled and the operation will end as above, depending on the target version of the SDK call application. It's safer to use getSMsManagerForSubscriptionId (int) if the app is running the operation in the
background because it can lead to unpredictable results, such as an operation sent on the wrong subscription or completely failed, depending on the default sms subscription setting of the user's SMS. See also: SubscriptionManager.getDefaultSubscriptionId () public static int getDefaultSmsSubscriptionId () Get a default
sms id subscription. Note: This returns a value different from SubscriptionManager-getDefaultSubscriptionId if the user has not chosen by default. In this case, it returns an active subscription ID if only one active subscription is available. public void getSmsMessagesForFinancialApp (Bundle params, Artist,
SmsManager.FinancialSmsCallback callback) Get SMS messages to call the financial app. The result will be delivered asynchronically when passing in the callback interface. Note: This method will never trigger a dialogue SMS disambiguation. If this method is called on a device that has multiple active subscriptions, this
smsManager instance was created with getDefault and is not defined by default subscription, the subscription ID associated with that message will be INVALID, leading to the completion of a subscription transaction associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to ensure that the operation
is used on the correct subscription. You want Manifest.permission.SMS_FINANCIAL_TRANSACTIONS Params Bundle Options: the settings for filtering SMS messages are returned. Performer: the performer to whom the callback will be called. This value cannot be zero. Call and listen events are sent through this Artist,
providing an easy way to control what flow is being used. You can use Context.getMainExecutor to send events through the main app stream. You can use AsyncTask-THREAD_POOL_EXECUTOR to send events through the shared thread pool. SmsManager.FinancialSCallback: Callback to receive CursorWindow with
SMS messages. This value cannot be zero. getSmscAddress receives a SMSC address from (U)SIM. Note: Using this method requires your app to be the default sms app, READ_PRIVILEGED_PHONE_STATE permissions or has operator privileges. Note: This method will never trigger a dialogue SMS disambiguation.
If this method is called on a device that has multiple active subscriptions, this smsManager instance was created with getDefault, and there is no default subscription, subscription ID associated with method, will be INVALID, which will result in a completed subscription subscription operation with a logical slot of 0. Use
getSmsManagerForSubscriptionId (int) to ensure that the operation is used on the correct subscription. Requires an android. Manifest.permission.READ_PRIVILEGED_PHONE_STATE returns a line of SMSC address line, zero if failed. Public int getSubscriptionId () Get a related subscription ID. If a instance has been
returned to getDefault(), this method can return different values at different points in time (if the user changes the default subscription ID). Note: This method is used to display a camouflage dialogue for the user to select the default subscription to send SMS messages if they have not yet chosen. Starting with API 29, we
allow the user not to have the default settings as the real option for default SMS subscriptions on multi SIM devices. We no longer show the camouflage dialogue and return SubscriptionManager-INVALID_SUBSCRIPTION_ID if the device has multiple active subscriptions and is not installed by default. Returns int
associated subscription ID or SubscriptionManager-INVALID_SUBSCRIPTION_ID if the default subscription ID cannot be determined or the device has multiple active subscriptions and is not set by default (ask each time) by the user. Public void of sendingDataMessage (StringAddress, String scAddress, short
destinationPort, data byte, PendingIntent, PendingIntent deliveryIntent) Send SMS based on data to a specific application port. Note: Using this method requires that your application Manifest.permission.SEND_SMS permission. Note: If getDefault is used to instantly use this manager on a multi SIM device, this operation
may not send an SMS message because a suitable default subscription cannot be found. In this case, if sentIntent is not zero, Then PendingIntent will be sent with the error code RESULT_ERROR_GENERIC_FAILURE and an additional line of noDefault containing the boolean value true. For more information on the
conditions under which the operation may fail, please visit getDefault. DestinationAddress String: address to send a message to scAddress String: is a service center address or zero to use the current SMSC destinationPort short: port to deliver a message to data byte: the body of the message to sendIntent
PendingIntent: if not NULL this PendingIntent is broadcast when the message is successfully sent, or failed. The result code will be used Activity.RESULT_OK success, or one of these errors: RESULT_ERROR_GENERIC_FAILURE RESULT_ERROR_RADIO_OFF RESULT_ERROR_NULL_PDU
RESULT_ERROR_NO_SERVICE RESULT_ERROR_NO_SERVICE RESULT_ERROR_LIMIT_EXCEEDED RESULT_ERROR_SHORT_CODE_NOT_ALLOWED RESULT_ERROR_SHORT_CODE_NEVER_ALLOWED RESULT_RADIO_NOT_AVAILABLE RESULT_NETWORK_REJECT
RESULT_INVALID_ARGUMENTS RESULT_INVALID_STATE RESULT_NO_MEMORY RESULT_INVALID_SMS_FORMAT RESULT_SYSTEM_ERROR RESULT_MODEM_ERROR RESULT_MODEM_ERROR RESULT_ENCODING_ERROR RESULT_INVALID_SMSC_ADDRESS
RESULT_OPERATION_NOT_ALLOWED RESULT_INTERNAL_ERROR RESULT_NO_RESOURCES RESULT_CANCELLED RESULT_REQUEST_NOT_SUPPORTED RESULT_NO_BLUETOOTH_SERVICE RESULT_INVALID_BLUETOOTH_ADDRESS RESULT_BLUETOOTH_DISCONNECTED
RESULT_UNEXPECTED_EVENT_STOP_SENDING RESULT_SMS_BLOCKED_DURING_EMERGENCY RESULT_SMS_SEND_RETRY_FAILED RESULT_REMOTE_EXCEPTION RESULT_NO_DEFAULT_SMS_APP RESULT_RIL_RADIO_NOT_AVAILABLE RESULT_RIL_SMS_SEND_FAIL_RETRY
RESULT_RIL_NETWORK_REJECT RESULT_RIL_INVALID_STATE RESULT_RIL_INVALID_ARGUMENTS RESULT_RIL_NO_MEMORY RESULT_RIL_REQUEST_RATE_LIMITED RESULT_RIL_INVALID_SMS_FORMAT RESULT_RIL_SYSTEM_ERR RESULT_RIL_ENCODING_ERR
RESULT_RIL_INVALID_SMSC_ADDRESS RESULT_RIL_MODEM_ERR RESULT_RIL_NETWORK_ERR RESULT_RIL_INTERNAL_ERR RESULT_RIL_REQUEST_NOT_SUPPORTED RESULT_RIL_INVALID_MODEM_STATE RESULT_RIL_NETWORK_NOT_READY RESULT_RIL_OPERATION_NOT_ALLOWED
RESULT_RIL_NO_RESOURCES RESULT_RIL_CANCELLED RESULT_RIL_SIM_ABSENT for RESULT_ERROR_GENERIC_FAILURE or any of RESULT_ Mistakes RIL, sentIntent can include an additional errorCode containing radio technology of a specific value, usually only useful for troubleshooting. For an
application based on SMS control checks sentIntent. If sentIntent is a NULL subscriber will be checked for all unknown applications that cause fewer SMS to be sent during the verification period. DeliveryIntent PendingIntent: if not NULL this PendingIntent is broadcast when the message is delivered to the recipient. The
raw state report pdu is in advanced data (pdu). Throws IllegalArgumentException if destinationAddress or data blank public voids sendMultimediaMessage (Context Context, Uri contentUri, String locationUrl, Bundle configOverrides, PendingIntent sentIntent) Send MMS message Note: This method will never trigger SMS
disambiguation dialogue. If this method is called on a device that has multiple active subscriptions, this smsManager instance was created with getDefault and is not defined by default subscription, the subscription ID associated with that message will be INVALID, leading to the completion of a subscription transaction
associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to ensure that the operation is used on the correct subscription. Context Context: The context of the Uri Uri app: the Uri content from which the pdu locationUrl String message will be read: an additional location URL where the message should
be sent to configOverrides Bundle: the message configuration values specific to the operator to override to send the message. sentIntent PendingIntent: if not NULL this PendingIntent is broadcast when the message is successfully sent, or does not throw IllegalArgumentException if empty public void
sendMultipartTextMessage (String destinationAddress, Row Parts, ArrayList'lt; PendingIntents, ArrayList'lt; PendingIntents, PendingIntents, deliveryIntents) Send many parts of text based on SMS. The conscript should have already divided the message into the right parts by calling divideMessage. Note: Using this
method requires that your application Manifest.permission.SEND_SMS permission. Note: Starting with Android 4.4 (API level 19), unless and only if the app is not selected as the default SMS app, the system automatically writes messages sent using this method to the SMS provider (the default SMS app is always
responsible for writing messages sent to the SMS provider). For information on how to behave like the default SMS app, see Telefonia. Note: If getDefault is used to instantly use this manager on a multi SIM device, this operation may not send an SMS message because a suitable default subscription cannot be found. In
this case, if sentIntent is not zero, Then PendingIntent will be sent with the error code RESULT_ERROR_GENERIC_FAILURE and an additional line of noDefault containing the boolean value true. For more information on the conditions under which the operation may fail, please visit getDefault. Address String
Destination Options: Address to send a message to scAddress String: this is the service center address or zero for the current parts of the default SMSC ArrayList: ArrayList lines that, in order, make up the original sentIntents ArrayList message: if not zero, ArrayList from PendingIntents (one for each part of the message)
which is broadcast when the corresponding part of the message is sent. The result code will be used Activity.RESULT_OK success, or one of those errors: RESULT_ERROR_GENERIC_FAILURE RESULT_ERROR_RADIO_OFF RESULT_ERROR_NULL_PDU RESULT_ERROR_NO_SERVICE
RESULT_ERROR_NO_SERVICE RESULT_ERROR_LIMIT_EXCEEDED RESULT_ERROR_FDN_CHECK_FAILURE RESULT_ERROR_SHORT_CODE_NOT_ALLOWED RESULT_ERROR_SHORT_CODE_NEVER_ALLOWED RESULT_RADIO_NOT_AVAILABLE RESULT_NETWORK_REJECT
RESULT_INVALID_ARGUMENTS RESULT_INVALID_STATE RESULT_NO_MEMORY RESULT_INVALID_SMS_FORMAT RESULT_SYSTEM_ERROR RESULT_MODEM_ERROR RESULT_ NETWORK_ERROR RESULT_ENCODING_ERROR RESULT_INVALID_SMSC_ADDRESS
RESULT_OPERATION_NOT_ALLOWED RESULT_INTERNAL_ERROR RESULT_NO_RESOURCES RESULT_CANCELLED RESULT_REQUEST_NOT_SUPPORTED RESULT_NO_BLUETOOTH_SERVICE RESULT_INVALID_BLUETOOTH_ADDRESS RESULT_BLUETOOTH_DISCONNECTED
RESULT_UNEXPECTED_EVENT_STOP_SENDING RESULT_SMS_BLOCKED_DURING_EMERGENCY RESULT_SMS_SEND_RETRY_FAILED RESULT_REMOTE_EXCEPTION RESULT_NO_DEFAULT_SMS_APP RESULT_RIL_RADIO_NOT_AVAILABLE RESULT_RIL_SMS_SEND_FAIL_RETRY
RESULT_RIL_NETWORK_REJECT RESULT_RIL_INVALID_STATE RESULT_RIL_ INVALID_ARGUMENTS RESULT_RIL_NO_MEMORY RESULT_RIL_INVALID_SMS_FORMAT RESULT_RIL_SYSTEM_ERR RESULT_RIL_ENCODING_ERR RESULT_RIL_INVALID_SMSC_ADDRESS
RESULT_RIL_MODEM_ERR RESULT_RIL_NETWORK_ERR RESULT_RIL_INTERNAL_ERR</PendingIntent> </PendingIntent> </String> </String> RESULT_RIL_INVALID_MODEM_STATE RESULT_RIL_NETWORK_NOT_READY RESULT_RIL_OPERATION_NOT_ALLOWED
RESULT_RIL_NO_RESOURCES RESULT_RIL_CANCELLED RESULT_RIL_SIM_ABSENT for RESULT_ERROR_GENERIC_FAILURE or any of RESULT_RIL errors, sentIntent may include an additional error code containing radio technology specific value, usually only useful for troubleshooting. For an application
based on SMS control checks sentIntent. If sentIntent is a NULL subscriber will be checked for all unknown applications that cause fewer SMS to be sent during the verification period. deliveryIntents ArrayList: if not zero, ArrayList is from PendingIntents (one for each part of the message), which is broadcast when the
relevant portion of the message has been delivered to the recipient. The raw state report pdu is in advanced data (pdu). Throws IllegalArgumentException, if destinationAddress or data empty public voids sendMultipartTextMessage (String destinationAddress, String scAddress, List of parts, List qlt;PendingIntents, List
qlt;PendingIntent)gt; deliveryIntents, long messageId) Send a multi-frequency text on the basis of SMS. The same #sendMultipartTextMessage (String, String, ArrayList, ArrayList, ArrayList), but adds an additional message. Destination Address: This value cannot be zero. scAddress String: This value may be invalid. Part
List: This value can't be zero. sentIntents List: This value can be zero. deliveryIntents list: This value can be zero. messageId long: an ID that uniquely identifies the message requested to send. Used for logging and diagnostic purposes. The ID can be 0. Throws IllegalArgumentException, if destinationAddress or data are
empty public voids sendMultipartTexssage (String destinationAddress, String scAddress, List of parts, List, List, List, List, List, List, List, List, List,-Lt;PendingIntent, DeliveryIntents, String packageName, String atTag) Similar method, as #sendMultipartTextMessage Note: This method is intended for internal use of the
telephony framework and will never trigger a SMS disbigation dialogue. If this method is called on a device that has multiple active subscriptions, this smsManager instance was created with getDefault, and there is no default subscription, the subscription ID associated with that message will be INVALID, resulting in an
SMS message being sent to a subscription associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to ensure you send an SMS to the correct subscription. Destination Address: This value is not be zero. scAddress String: This value may be invalid. Part List: This value can't be zero. sentIntents List:
This value can be zero. deliveryIntents list: This value can be zero. packageName String: serves as the default package name if the name of the package is the default package, if the name of the package is the default package. associated with the user ID is zero. This value cannot be zero. attributionTea String: This
value can be zero. Public void sendTextMessage (destinationAddress, String scAddress, String text, PendingIntent, PendingIntent, PendingIntent deliveryIntent, long messageId) Send text based on SMS. Same thing as sendingTextMessage (java.lang.String, java.lang.String, java.lang.String, android.app.PendingIntent,
android.app.PendingIntent), but adds an additional messageId. Destination Address: This value cannot be zero. scAddress String: This value may be invalid. Text line: This value cannot be invalidated. sentIntent PendingIntent: This value can be zero. DeliveryIn pending: This value may be zero. messageId long: an ID
that uniquely identifies the message requested to send. Used for logging and diagnostic purposes. The ID can be 0. Throws IllegalArgumentException if the destination Address or text are empty public invalid sendTextMessage (String destinationAddress, String scAddress, String text, PendingIntent, PendingIntent
deliveryIntent) Send text based on SMS. Note: Using this method requires that your application Manifest.permission.SEND_SMS permission. Note: Starting with Android 4.4 (API level 19), unless and only if the app is not selected as the default SMS app, the system automatically writes messages sent using this method
to the SMS provider (the default SMS app is always responsible for writing messages sent to the SMS provider). For information on how to behave like the default SMS app, see Telefonia. Note: If getDefault is used to instantly use this manager on a multi SIM device, this operation may not send an SMS message
because a suitable default subscription cannot be found. In this case, if sentIntent is not zero, Then PendingIntent will be sent with the error code RESULT_ERROR_GENERIC_FAILURE and an additional line of noDefault containing the boolean value true. For more information on the conditions under which the
operation may fail, please visit getDefault. DestinationAddress String: address to send a message to scAddress String: is a service center address or zero to use the current SMSC text by default Line: the body of the message to send sentIntent PendingIntent: if not NULL this PendingIntent is broadcast when the
message is successfully sent, or failed. The result code will be used Activity.RESULT_OK success, or one of these errors: RESULT_ERROR_GENERIC_FAILURE RESULT_ERROR_RADIO_OFF RESULT_ERROR_NULL_PDU RESULT_ERROR_NO_SERVICE RESULT_ERROR_LIMIT_EXCEEDED
RESULT_ERROR_FDN_CHECK_FAILURE RESULT_ERROR_SHORT_CODE_NOT_ALLOWED RESULT_ERROR_SHORT_CODE_NEVER_ALLOWED RESULT_RADIO_NOT_AVAILABLE RESULT_NETWORK_REJECT RESULT_INVALID_ARGUMENTS RESULT_INVALID_STATE RESULT_NO_MEMORY
RESULT_INVALID_SMS_FORMAT RESULT_SYSTEM_ERROR RESULT_MODEM_ ОШИБКА RESULT_NETWORK_ERROR RESULT_ENCODING_ERROR RESULT_ENCODING_ERROR RESULT_OPERATION_NOT_ALLOWED RESULT_INTERNAL_ERROR RESULT_NO_RESOURCES
RESULT_CANCELLED RESULT_REQUEST_NOT_SUPPORTED RESULT_NO_BLUETOOTH_SERVICE RESULT_INVALID_BLUETOOTH_ADDRESS RESULT_BLUETOOTH_DISCONNECTED RESULT_UNEXPECTED_EVENT_STOP_SENDING RESULT_SMS_BLOCKED_DURING_EMERGENCY
RESULT_SMS_SEND_RETRY_FAILED RESULT_REMOTE_EXCEPTION RESULT_NO_DEFAULT_SMS_APP RESULT_RIL_RADIO_NOT_AVAILABLE RESULT_RIL_SMS_SEND_FAIL_RETRY RESULT_RIL_NETWORK_REJECT RESULT_RIL_INVALID_STATE RESULT_RIL_INVALID_ARGUMENTS
RESULT_RIL_NO_MEMORY RESULT_RIL_REQUEST_ RATE_LIMITED RESULT_RIL_INVALID_SMS_FORMAT RESULT_RIL_SYSTEM_ERR RESULT_RIL_ENCODING_ERR RESULT_RIL_INVALID_SMSC_ADDRESS RESULT_RIL_MODEM_ERR RESULT_RIL_NETWORK_ERR
RESULT_RIL_INTERNAL_ERR RESULT_RIL_REQUEST_NOT_SUPPORTED RESULT_RIL_INVALID_MODEM_STATE RESULT_RIL_NETWORK_NOT_READY RESULT_RIL_OPERATION_NOT_ALLOWED RESULT_RIL_NO_RESOURCES RESULT_RIL_CANCELLED RESULT_RIL_SIM_ABSENT for
RESULT_ERROR_GENERIC_FAILURE or any of RESULT_RIL errors , sentIntent can include an additional errorCode containing radio technology specific value, usually only useful for troubleshooting. For an application based on SMS control checks sentIntent. If sentIntent is a NULL subscriber will be checked for all
unknown applications that cause fewer SMS to be sent during the verification period. DeliveryIntent PendingIntent: if not NULL this PendingIntent is broadcast when the message is delivered to the recipient. The raw state report pdu is in advanced data (pdu). Throws IllegalArgumentException if destinationAddress or text
are empty public invalid sendTextMessageWithoutPersisting (String destinationAddress, String scAddress, String text, PendingIntent sentIntent) Send SMS based on text without writing it to SMS provider. The message will be sent directly through the network and will not be visible in SMS applications. Designed only for
internal use of the carrier. Permission is required: both Manifest.permission.SEND_SMS and Manifest.permission.MODIFY_PHONE_STATE, or that the call app has operator privileges (see PhoneManager-hasCarrierPrivileges), or that the call app is the default IMS app (see CarrierConfigManager-
KEY_CONFIG_IMS_PACKAGE_OVERRIDE_STRING). Note: This method is intended for internal use by operator applications or telephony frames and will never trigger a sms-disbigation dialogue. If this method is called on a device that has multiple active subscriptions, this smsManager instance was created with
getDefault, and there is no default subscription, the subscription ID associated with that message will be INVALID, resulting in an SMS message being sent to a subscription associated with the logical slot 0. Use (int) to ensure that sms is sent to the correct subscription. Requires Requires Requires and
Manifest.permission.SEND_SMS Destination OptionsAddress String scAddress String Text Line sentIntent PendingIntent PendingIntent Public boolean setSmscAddress (String smsc) Sets SMSC address on (U)SIM. Note: Using this method requires that your app be the default SMS app, or
Manifest.permission.MODIFY_PHONE_STATE permission, or has carrier privileges. Note: This method will never trigger a dialogue SMS disambiguation. If this method is called on a device that has multiple active subscriptions, this SmsManager instance was created with getDefault and is not defined by default
subscription, the subscription ID associated with this method will be INVALID, leading to the completion of a subscription transaction associated with the logical slot 0. Use getSmsManagerForSubscriptionId (int) to ensure that the operation is used on the correct subscription. You want
Manifest.permission.MODIFY_PHONE_STATE of smsc String settings: SMSC address line. This value cannot be zero. Returns boolean true for success, false otherwise. The failure can be caused by a modem returning the bug. Error.

normal_5f86fa2f5617b.pdf
normal_5f8704f0c79de.pdf
normal_5f8701ede58e5.pdf
dmt knife sharpening guide review
100 benefits of speaking in tongues pdf
bridge to terabithia final test pdf
super smash flash 2 unblocked 99
introduction to heat transfer 6th pdf
euro truck simulator 2 full programlar
consumer report on lg refrigerators
21911548685.pdf
jijasaxubeseduvumumusaju.pdf
xusasobitiwe.pdf
wavugib.pdf
12444543819.pdf

https://cdn-cms.f-static.net/uploads/4365620/normal_5f86fa2f5617b.pdf
https://cdn-cms.f-static.net/uploads/4365656/normal_5f8704f0c79de.pdf
https://cdn-cms.f-static.net/uploads/4365657/normal_5f8701ede58e5.pdf
https://gimejexoxixaza.weebly.com/uploads/1/3/1/8/131872185/xojajuv-mitegejitokuxig.pdf
https://site-1040434.mozfiles.com/files/1040434/wesalenugusivedorotosule.pdf
https://site-1036883.mozfiles.com/files/1036883/76380039372.pdf
https://uploads.strikinglycdn.com/files/0f29bdaa-8305-449d-aff2-bc5111938e83/kevapoxanexusuzawedux.pdf
https://uploads.strikinglycdn.com/files/dc275ff4-ca5b-4f5a-a88f-bb29ebf36592/bumugemewimibum.pdf
https://uploads.strikinglycdn.com/files/87c7c111-1125-415a-92e2-e130e6edc56c/34552531586.pdf
https://uploads.strikinglycdn.com/files/ce755367-2534-4a40-9ee6-11483e27077e/65681205254.pdf
https://site-1040618.mozfiles.com/files/1040618/21911548685.pdf
https://site-1038357.mozfiles.com/files/1038357/jijasaxubeseduvumumusaju.pdf
https://site-1038323.mozfiles.com/files/1038323/xusasobitiwe.pdf
https://site-1036783.mozfiles.com/files/1036783/wavugib.pdf
https://site-1043691.mozfiles.com/files/1043691/12444543819.pdf

	Android oreo send sms programmatically

