Android mqgtt push notification app

I'm not robot -
reCAPTCHA

https://gettraff.ru/123?keyword=android+mqtt+push+notification+app

Review How to receive push notifications using MZTT's Android mobile app Von | wrote earlier about MOTT as a technology to perform push notifications on a mobile phone. When | wrote this, | gave the example of an Android project. However, this was the first time | ever did android development, and
although it was a good sample of Java MZTT, it was a bad Android sample - | knew nothing about how Android works as a platform. Since then I've written other Android MZTT apps such as the hackday app to click updates from websites on your phone and learned a lot about how to do it right. OK... if not
properly, at least a little better. But Google still directs people to my old, and probably useless, sample. So it's time that | share something more useful. I've put the full source to the sample below. (Note that | use the Java J2EE client library with ibm.com). We hope that the comments in it are quite clear, but
here are some of the key points. Services vs. Activities Let's start with a simple one. The most obvious screw-up in my first attempt was not understanding the difference between activity and services. When you write the Android graphical interface, you expand the action. Only one action works on the
phone at a time - an app that the user uses. When you switch to another app or close the app, the action is crushed. If you rotate your phone while you're running the app, the action is crushed and a new one is launched to implement the GUI in a new orientation. The point is that the activity is short-lived.
Make them beautiful. Don't force them to do any lengthy weightlifting. Not having insposed any things from MOTT. Because he's going to be killed soon, without much warning. It doesn't matter if you kick off the background streams as they will be killed, too. My first sample of MOTT (which did everything in
the activity) was completely unreliable. | created an MHT Client facility that creates a long-term TCP/IP connection. And then, if | turned the phone around a bit, my object MGTClunt would get the trash collected. Instead, | now use the service. Services are designed to carry out longer operations , multiple
services can run at the same time. It doesn't matter if you GUI-up class gets trashed and trash collected - the service can continue to run together in the background. The MGT Client can survive in a service facility, and its constant TCP/IP connection can be open. Make this sticky service designed for the
long term, but they don't stay forever. If the phone gets a low level of memory - usually because the user uses the app in the foreground (so as a high priority), which requires a lot of memory. It happens often - it's not an unusual thing that can happen once a blue moon. My experience is that every day with
your Service. Several times. My service may bumble together for hours happily, but then it will be killed without warning. Returning a constant START_STICKY when your service is up and running, you tell Android that if it has to kill the service to free up valuable resources, then you want it to restart the
service when the resource becomes available again. Persistent connection Here's what you get for free, but | thought it was interesting enough to note. When creating an M'TTTClient object, one of the things it does is set up a long-term TCP/IP connection. When you receive a message, the callback
method is called. When the user doesn't use their phone and it's turned off, Android starts turning things off to save battery life. My concern is that disabling the phone could break my connection, or stop the code waiting for incoming messages. Although | haven't found a good example of where this is
documented, it seems that even if your phone sleeps, if the data is obtained on the connection, your code will be woken up and publishArrived called. The MTT customer library code that blocks the outlet will be revived when any data is available to the outlet. Keeping the connection alive - in a bad way
Well... You almost get it for free. When you connect to a MGT server, one of the parameters is to keepAlive period - an agreement between the client and the server about how often the server should expect to hear from the client. If the server does not hear from the client during this period keepAlive, then
it assumes that the client has left and closes the connection. The MGT Client knocks out the background stream, which is responsible for sending ping messages to the server often enough to keep the connection alive. | mentioned above that when a user doesn't use their phone and it's turned off, Android
starts turning things off to save battery life. This includes a processor. And if the processor stops, that background stop. No background flow occurs, after the keepAlive period expires the server closes the connection. If you use RSMB, you see it in the server log. 20110130 234952.683 CWNANO00241 1200
second time-out for customer 1296420495459774d56d6, ending the connection The easiest approach is to use Wake Lock. This is a way for the app to prevent the phone from shutting down. By taking action PARTIAL_WAKE_LOCK, you keep the processor running even if the user presses the power
button. If you take PARTIAL_WAKE_LOCK before you make a MHT connection and save it, then the processor won't stop while your app is running, the standard background stream of MHTC Client never stops, and a long connection to the network is maintained. But... Erm... It also means that you have
stopped the user from being able to turn off their phone! It's a little bit Since this has a big impact on the battery life of the phone. So | prefer to avoid it. Testing what happens when you turn off your phone - gotcha Some of my early attempts at the MOTT service for Android didn't take after the lock, but still
worked fine. What | don't understand is that | had several apps installed on my phone that keep partial wakefulness locks all the time. Even though my app didn't stop the phone's cPU from turning, other apps were. And | benefited from it and didn't realize | had a problem. The ADB shell team dumpsys
spitting out a ton of material on the connected phone, including a list of current wakefulness locks. (Search for 'mLocks.size' in the output). You have to do this several times to get a picture of what's going on - some apps will, quite legitimately, take a partial wake-up lock from time to time until they do
something critical that they don't want to be interrupted. The app problems that take wake locks when they start, and keep it forever - are the ones that are always in the mLocks table in the output dumpsys. After uninstalling these apps, the results from my test were very different, and it was that showed me
that | needed to do something to keep the link alive. Keeping the connection alive - in a good way the best approach might be to write a library of MHTT customers to work in a more Android-oriented way. But to be honest, I'm too lazy for this - so | use the existing Java J2EE client library, but in addition to
that I'm serving my own keepAlive approach, assuming that the client library won't be good enough. AlarmManager provides a way to ask Android to wake up a device that sleeps at a specified time, run a specific method in your code. | schedule something to wake the phone before the current keepAlive
period expires, long enough to send MHTT ping, after which it is free to go back to sleep. It doesn't wake up the phone screen if it's off - it just starts the processor, so my keep the live code can work. Note that the MZTT specification says that the server should give the client a grace period of half to keep
the interval alive again (for example, if you keep alive for 20 minutes, then the server is required to cut off the client to 30 minutes after he last heard from him). This means | don't have to worry about getting my ping in just before the keepAlive interval - there's enough freedom in the specs that | can just
schedule a ping for keepAlive seconds after the last interaction with the server. Do not rely on the connectionLost Library M'TTTClient has a callback connectionLost, which must be called to inform the code if the connection If you have a long interval, then the client can wait for a long time before believing
that not hearing from the server means that the connection is broken. It's This. callback, but in itself does not respond enough, especially for something like a phone where the state of the connection changes so often (e.g., moving from mobile data coverage and loss of communication, moving between Wi-
Fi and mobile cellular data, etc.) Android provides a notification system to inform your app of these changes. In response to these notifications, | assume that my connection is no longer reliable and reconnect. If you use RSMB, you see it in the server log. 20110129 230652.613 CWNANOO033I lNonbITka
noaknyeHns K cnywarento 1883 nonyunn ot knveHTa 12963424184129774d56d6 no agpecy 9 3.97.32.135:61055 20110129 230703.834 CWNANOO33I MNMonbITka cnywartens 1883 nonyyeHo oT KiveHTa 12963424184129774d56d6 no agpecy 82.132.248.199:58529 20110129 230703.834 CWNANO0034I
[Ay6nunkaTt nonbITKNU NOAKYEHMS, NOMYYEHHbIW ANa naeHtTudurkaTopa kameHta 1296342418412977d56d6, okoHYUaHMe cTapeillero coegmMHeHNs1 YBaxeHue 3anpocoB nonb3oBartensd Android npegoctaBnseT BO3MOXHOCTb AJ/151 N0O/Ib30BaTe s, YTOObI OTKNHUNTL UCNOb30BaHNE POHOBBIX AaHHbIX
npunoxeHusamu. But it is not respected. The user may not untick background data to check to indicate that applications should not use the network in the background, and provides an API for applications to check this value. But apps can ignore this. This is not a good thing - users should be able to decide
how their mobile is used. | check this value before | do anything, and set up the listener in case the value changes during the service. Create a unique customer ID, the MSTT Specification requires a unique customer ID for each customer. | use a unique device ID from my phone to create this. Annoyingly,
it's not available on emulators, so with that | use timestamp - the current time in milliseconds from January 1, 1970. Note that the specification also determines the maximum allowable length of the customer ID, so I'll truncation this as needed. Assuming you'll spend time without communication it's more of
a generic approach thing rather than a specific bit of code. But the service must assume that it will often be disabled, and must process reconnection whenever possible without requiring user intervention. I've seen apps (I'm looking at you, facebook!), which, if they're unable to connect to their server, just
get stuck in an endless loop of retries - constantly trying and failing. On a personal note, | have more mobile phones than SIM cards. And | notice that with these apps installed, the battery life of the phone is worse when there is no SIM card in it than when there is, partly because these applications are
constantly trying to communicate with the server without a network connection. Instead, discover when the network is not available and All. Don't spool, don't ping, don't keep trying or checking, just request notification when the connection is back, stop all keepalive keepalive run and sleep. And be prepared
to get everything back up and running fast when the connection is available again. There is also a review of how you send server messages to the party. When you post a message, you can make the message saved. This means that if the client is unavailable, the server will store messages for him safely,
and transfer them when the customer connects. This may not be suitable for all scenarios, but it is certainly something that | use a lot, and seems to fit well into mobile phones that are often disabled, the customer should not miss the messages published while he is in the black place. By reminding the user
that you work in desktop window environments, users are used to knowing what works in their system - because they can see the windows they have open. On a mobile OS where only one application is open at the same time, it's harder to have a sense of what's running in the background. This is normal
for services that stay running to do a specific thing, and will stop when they are completed. But for services like this that intend to run forever until manually stopped, the user should really remind what he is. In my example, | use a current notification in the state bar that will stay there whenever the service is
running. Thus, the user is reminded that he uses some of the resources of his phone. You might think it might be annoying, so maybe it should be done optional - giving the user a way to hide the notification if they're happy to leave it running without a reminder. But even then, | would notice by default. It is
likely that for most of the time the Service will not have an Activity user interface showing the latest data. Activity's user interface may be launched later and will want to have access to messages that were received during its launch. This means that the Service should probably store the messages it
receives somewhere. This will depend on the application. Apps that handle very small amounts of data, such as updates and notifications that you don't need to save if the app and/or phone are restarted, etc., may be acceptable to store that data in a variable in the Service. That's what | do in the sample
below - store it in a local hash-style. Apps that handle large amounts of data and/or need data to be stored, even if the app and/or phone are restarted, need to store data safely. There are a number of storage options available - choose the one that best suits the type/frequency/size, etc. of your data.
Choosing the value of keep-alive, | keepAlive above - how often a client has to contact a server to keep the connection alive. It's a difficult decision. Desktop Desktop often, and you waste time battery life. If you ping too rarely and you may not notice if you lose touch before the next failed ping attempt. This
is a trade-off between how time sensitive the data that your application processes is against the acceptable impact on battery life. But are there also perhaps a network of specific problems? How long will a mobile operator leave a idling connection open before they trash it? For example, it may be that
there is no point in being kept alive for 40 minutes if the user's network operator will litter the connection after 20 minutes. | need to experiment with this more, but at the same time | use keep alive 20 minutes, which seems to be fairly reliable. Transfer config values is a small point, but it's worth thinking
about how to provide the Service with the connection settings it needs, such as the server host's name. There are many ways to do this. Because | don't want users to enter these settings every time the service is up and running, | also need to save those settings. The easiest way to keep small amounts of
config information so that it is available to the Service and modified by the Activity user interface is the way the example below does. Relaying received messages to interested user interfaces | outlined previously the main separation between back-end, long-term network connectivity implemented in the
service, and the user interface implemented in the activity. There are different ways that they can communicate with each other. For this sample | use broadcasts. It's essentially a pub/sub local engine to the phone. Whenever the Service receives a message from the MZTT from the network, it broadcasts it
locally over the phone. If Activity's user interface works, it will subscribe to these messages by creating BroadcastReceiver. When Action is not active, it may unregistered these listeners. This means that the Service doesn't need to keep track of whether the Activity 9 user interface is working or not by
removing the connection between the back and front ends of the app. My sample service - code with everything that waffling aside - is the code. My blog doesn't display the code very well, so you'd probably better copy and replicate it in your favorite IDE with Java coloring/formatting included. | put it there
in the hope that it's useful. If you use it, | would appreciate thanks and/or link. © package dalelane.android.mqtt; import java.lang.ref.WeakReference; import java.util.Calendar; Import java.util. Date imports java.util. Enumeration; import java.util. Hashtable; Import android.app.AlarmManager; Import
android.app.Notification; Import import android.app.Pendingintent; import android.app.Service; Imports Imports umnopTtuposatb android.content.Context; umnopTtuposartb android.content.Intent; nmnopTuposath android.content.IntentFilter; umnopTuposatk android.content.SharedPreferences;
nmnoptuposaTb android.graphics.Color; umnoptnpoBats android.net.ConnectivityManager; nmnopTtupoBaTb android.os.Binder; nmnoptuposaTb android.os.IBinder; umnoptupoBats android.os.PowerManager; nmnopTtuposatb android.os.PowerManager.WakeLock; nmnoptuposaTb android.provider.Settings;
nmnoptuposaTk android.provider.Settings.Secure; nmnoptuposatk android.util.Log; nmnopT com.ibm.mqtt.IMqttClient; umnopt com.ibm.mqtt.MqttClient; nmnopt com.ibm.mqtt.MgttException; nmnopt com.ibm.mqtt.MqgttNotConnectedException; umnopt com.ibm.mqtt.MqttPersistence; nmnoptmuposartb
com.ibm.mqtt.MqttPersistenceException; umnopt com.ibm.mqtt.MqttSimpleCallback; Mpumep Toro, kak peannsoatb kaMeHT M3TT B Android, cnoco6HbIn nony4vaTtb push-yBegomnieHus ¢ cepepa 6pokepa coobuweHunin M3TT. * * Dale Lane (dale.lane@gmail.com) * 28 Jan 2011 */ public class
MQTTSerVICe extends SeI’VICG Imp|ementS Mqttslmpleca”back { /**/ /* CONSTANTS */ /*****'k************'k***/ // Somethlng unlque to Identlfy your app - used for Stuff Ilke acceSSIng // appllcatlon
preferences public static final String APP_ID = com.dalelane.mqtt; // constants used to notify the Activity Ul of received messages public static final String MQTT_MSG_RECEIVED_INTENT = com.dalelane.mqtt. MSGRECVD; public static final String MQTT_MSG_RECEIVED_TOPIC =

com.dalelane.mqtt. MSGRECVD_TOPIC; public static final String MQTT_MSG_RECEIVED _MSG = com.dalelane.mqtt. MSGRECVD_MSGBODY:; // constants used to tell the Activity Ul the connection status public static final String MQTT_STATUS_INTENT = com.dalelane.mqtt. STATUS; public static final
String MQTT_STATUS_MSG = com.dalelane.mqtt. STATUS_MSG,; // constant used internally to schedule the next ping event public static final String MQTT_PING_ACTION = com.dalelane.mqtt.PING; // constants used by status bar notifications public static final int MQTT_NOTIFICATION_ONGOING = 1;
public static final int MQTT_NOTIFICATION_UPDATE = 2; // constants used to define MQTT connection status public enum MQTTConnectionStatus { INITIAL / / nepsoHa4vanbHbIi cTatyc CONNECTING |, // nonbiTka nogknitounte CONNECTED, // noAKIt04YeHHbIM
NOTCONNECTED_WAITINGFORINTERNET, // He MOXeT noaxktounTbcs, noTomy 4to TesiecpoH // He nmeet goctyna B MIHTepHeT NOTCONNECTED_USERDISCONNECT, // NMonb3osaTtenb ssHO 3anpocus // otkntoveHne NOTCONNECTED DATADISABLED, // He MoXeT noAKAtUNTLCS, MOTOMY UTO
nonb3oBarens // otkoumn goctyn K gaHHbiIM NOTCONNECTED _UNKNOWNREASON // He cMor NoakMiounTLCA MO Kakoi-To npuynHe // MTT KOHCTaHTbl ny6anyHoro ctatmnyeckoro int MAX_MQTT_CLIENTID_LENGTH /A/ VARIABLES, ucnons3yemsle ansa nogaepxanuns wrart () / // MZTT Client
Connections Private Connection mGTCONNECTIonStatus - MSTCONNECTionStatus.INITIAL; /I/ VARIABLES used to customize the MCHTT connection // // The name of the server that we receive push notifications from private string brokerHostName // taken from preferences // the name of the server to

which we receive push notifications from private string brokerHostName. taken from preferences / a topic about which we want to receive messages / may include wildcards - for example, | coincide with anything private topic stringName - ; by default - this sample uses very basic defaults for its interaction /
with the communication of brokers private int brokerPortNumber No 1883; private MgttPersistence usePersistence and null; Private boolean cleanStart - false; Private quality intOfService No 0; How often does an app have to ping a server to keep the connection alive? Too often - and you spend battery life
/ too rarely - and you won't notice if you lose the connection / until the next failed ping attempt ! / This is a trade-off between how time sensitive data that yours is processing, against the acceptable effect on battery life / / It may also be worth keeping in mind the network support for / Ideally, to keep the
connection open / You want to use to keep the live value, which is less than the period after which the network operator will kill the idle private keepAlive. This is how the android client app will identify themselves in/post the broker. It should be unique to the broker - two clients are not allowed to connect to
the same broker using the same client ID. /I/ VARIABLES - other local variables B / // Connection to the post of the broker private IMqttClient mqttClient - zero; The recipient who notifies the Service when the phone is connected to the private NetworkConnectionintentReceiver netConnReceiver data; The
recipient, notifying the Service when changing the data, uses the preferences of the private BackgroundDataChangelntentReceiver dataEnabledReceiver; A receiver that wakes up the Service when it's time for a private pingSender pingSender; /' METHODS - basic lifecycle maintenance methods // see
@Override public void onCreate () - super.onCreate (); reset the status of the variable to the original state connection. create a link that will enable the activities of send a team to mBinder Service - the new LocalBinder (it); Get the broker's settings from the app's preferences/ This isn't the only way to do
this - for example, you can use the / Intention that launches the Service to convey the configuration values of the zIt;M'TTTService'gt;SharedPreferences settings - getSharedPreferences (APP_ID, MODE_PRIVATE); topicName - settings.getString (theme,); sign up to be notified whenever a user changes
their preferences / Related to the use of background data - so that we can respect the current / Preference dataEnabledReceiver - new BackgroundDataChangelntentReceiver (); registerReceiver (dataEnabledReceiver, new IntentFilter

(ConnectivityManager. ACTION_BACKGROUND_DATA_SETTING_CHANGED)); Identify the connection to the broker to identifyConnectionToBroker (brokerHostName); - @Override void onStart (final intention intention, final int startld) / This is an old onStart method that will be called on the platform pre-
2.0/ At 2.0 or later we override onStartCommand (), so this ... method will not be called. new thread (new Runnable() - @Override public invalid launch () - handleStart (intention, startld); @Override public int onStartCommand (final intention of intent, int flags, final int startld) - new thread (new Runnable () -
@0Override public invalid launch () START_NOT_STICKY - handleStart to have it/ to be restarted return START_STICKY; - synchronized emptiness handleStart (intention, int startld) !) before we start - check for several reasons why we should stop if (mqttClient) - null) LinkManager see
(ConnectivityManager)getSystemService (CONNECTIVITY_SERVICE); if (cm.getBackground) / User disabled background data connectionStatus No MQTTConnectionStatus.NOTCONNECTED_DATADISABLED; / update the app to show that the connection has been disabled broadcastServiceStatus
(Not connected - background data is disabled); / We have a listener running that will notify us when it is a / Preference change , and will call handleStart again when it is / - allows us to pick up where we leave now to return; Activity User Interface started the MHTT service - it can be a launch / The service is
new for the first time, or after the Service has been working for some time (several calls for startService do not start / multiple services, but it calls this method several times) / If we already run, we re-send any stored data rebroadcastStatus (); RebroadreiveMeses If the Service is a service of
zIt;/MTTServicealready working and we are already connected - we // do not need to do anything if (isAlreadyConnected () - false) - / establish a status to show that we are trying to connect connectionStatus and M'TTTConnectionStatus. CONNECTING; We create a background service that will work
forever until the user explicitly stops it. So - in case they start to need it !) to save battery life - we need to make sure they don't forget ... We run, leaving the current notification in status!) bar until we run NotificationManager nm (NotificationManager) getSystemService (NOTIFICATION_SERVICE); Notice of
notification - new notice (R.drawable.icon, MTT, System.currentTimeMillis(); notification.flags and Notification.FLAG_ONGOING_EVENT; notification.flags and Notification.FLAG_NO_CLEAR; Notice of Intentintent - New Intention (this, M'TTTNotifier.class); Pendingintent contentintent -
Pendingintent.getActivity (it is, 0, noticelntent, Pendingintent.FLAG_UPDATE_CURRENT); notification.setLatestEventinfo (this, MHTT, MHTT Service works, contentintent); nm.notify (MQTT_NOTIFICATION_ONGOING, notification); Before we try to connect - we check if the phone has a work connection
to the data if (isOnline) / We think we have an Internet connection, so try to connect // to the broker's message if (connectToBroker() -/ We subscribe to the topic - register to receive a push // notifications with a certain key // In a real application, you can subscribe to several // topics - | just subscribe to one
as an example // Please note that this topic We may include a wildcard, so that // We could receive // Messages on several topics to subscribe to - yet th ! we can't do anything now because we don't have a working connection / Connection to the dataStatus No

MQTTConnectionStatus. NOTCONNECTED_WAITINGFORINTERNET; Tell the app that we are not connected to broadcastServiceStatus (Waiting to connect to the network); Changes to the phone's network - such as bouncing between WiFi/ and mobile data networks - can break the MTT connection! So
we use / Built-in Android notification system to be aware of / Network changes - so that we can recover immediately, without / haing to wait for a timeout of MZTT, if (netConnReceiver) ConnectivityManager. CONNECTIVITY_ACTION - netConnReceiver - the new NetworkConnectioninReceiver ();
registerReceiver (netConnReceiver, new IntentFilter)) / creates intentions that are used to wake up the phone when it is / Time for ping server, if (pingSender and null) - pingSender - new PingSender (); registerReceiver (pingSender, new IntentFilter (MQTT_PING_ACTION)); @Override onDestroy () -
super.onDestroy (); Immediately disableFromBroker tell the app that the app has oTknoueHHas TpaHcnsaymaServiceStatus (OTKIOUEH); cTapaliTech He NpoTekaTh cnywaTtesnto, ecnv (dataEnabledReceiver! - null) - He3apernctpmpoBaHHbiiReceiver (dataEnabledReceiver); dataEnabledReceiver - null;
/**/ /* METHODS - broadcasts and notlflcatlons */ /**/ // methods Used to notlfy the ACtIVIty UI Of Somethlng that has happened // SO that It can be updated to reﬂect StatUS and the data
received // from the server private void broadcastServiceStatus(String statusDescription) { // inform the app (for times when the Activity Ul is running / // active) of the current MQTT connection status so that it / can update the Ul accordingly Intent broadcastintent = new Intent();
broadcastintent.setAction(MQTT_STATUS_INTENT); broadcastintent.putExtra(MQTT_STATUS_MSG, statusDescription); sendBroadcast(broadcastintent); } private void broadcastReceivedMessage(String topic, String message) { // pass a message received from the MQTT server on to the Activity Ul //
(for times when it is running / active) so that it can be displayed // in the app GUI Intent broadcastintent = new Intent(); broadcastintent.setAction(MQTT_MSG_RECEIVED_INTENT); broadcastintent.putExtra(MQTT_MSG_RECEIVED_TOPIC , Tema); broadcastintent.putExtra
(MQTT_MSG_RECEIVED_MSG, coobuieHune); sendBroadcast (TpaHCNAUMANHTEHT); -/ MeToAbl, UCMO/b3yeMble A5 YBeAOMIEHNS M0/1b30BaTtesisi 0 TOM, YTO MPOU30LLSIO B Nepunoapl, korga // nonb3osBaTenbCknii MHTEpdIenc akTMBHOCTY NPUIOXKEHUSA He paboTaeT B YaCTHOM HeZlelCTBUTETbHOM
yBegomneHnnUser (String alert, String title, String body) - NotificationManager nm (NotificationManager) getSystemService (NOTIFICATION_SERVICE); YBegomneHue 06 yBegomneHun - Hooe ysegomneHue (R.drawable.icon, onoBeweHne, System.currentTimeMillis(); notification.defaults
Notification.DEFAULT_LIGHTS; notification.defaults n Notification.DEFAULT_SOUND; notification.defaults n Notification.DEFAULT_VIBRATE; notification.flags n Notification.FLAG_AUTO_CANCEL; ysegomneHue.ledARGB - Color.MAGENTA,; YBegomMneHne o HamepeHusaxintent - HoBoe HamepeHue (3To,
M'TTTNotifier.class); Pendingintent contentintent - Pendingintent.getActivity (ato, 0, ysegomneHnuelntent, Pendingintent. FLAG_UPDATE_CURRENT); yBegomneHue.setLatestEventinfo (aTo HasBaHue, Teno, cogepxaHuelntent); nm.notify (MQTT_NOTIFICATION_UPDATE, ysegomneHue); () / METHODS -
NpuBA3Ka, KoTopasi N03BOSET NOMYYnTb AOCTyn OT Actitivy MonbITka caenartb /IoKa/IbHY NPUBA3KY NPYU MUHUMKU3ALMN yTeuek - kog, 6narogaps /1 xedod BpykHep - KoTopblin A Hawen Ha // privateBinder;&It; MQTTService> @Override </MQTTService>IBinder onBind (Intention) - mBinder return; -
LocalBinder Community Class Expands Binder - Private WeakReference Public LocalBinder (S service) - mService - new WeakReference (service); - Public S getService () - return mService.get(); - public emptiness, closed () - mService - null; public methods that can be used by actions that are associated
with the Service / public status M'TTTConnectionStatus () - reverse connectionStatus; Switch (connectionStatus) - case INITIAL: status - Please wait; A break; Connecting case: Status - Connection...; A break; Connected case: Status and Connected; A break; Case
NOTCONNECTED_UNKNOWNREASON: Unconnected status - waiting for a network connection; A break; Case NOTCONNECTED_USERDISCONNECT: Status and Disconnected; A break; Case NOTCONNECTED_DATADISABLED: status and Not connected - background data is disabled; A break;
Case NOTCONNECTED_WAITINGFORINTERNET: Status and Impossible to Connect; A break; Tell the app that the Service has successfully connected broadcastServiceStatus (status); - disabling the public void () - disabling The Drop-droper (); establish the status of the connectionStatus No.
MQTTConnectionStatus. NOTCONNECTED_USERDISCONNECT; Tell the app that the app has successfully disabled broadcastServiceStatus (Disconnected); (1) // METHODY - MSTT methods inherited from the MZTT classes, Issues // Callback - a method called when we no longer have a connection to
the message broker server/public invalid connectionLost () throws exception // We protect against switching off the phone while we do this // requesting a wake-up lock - we ask for the minimum possible // wake-up lock - enough to keep the processor running until we've finished PowerMana
POWER_SERVICE ger WakeLock wl and pm.newWakeLock (PowerManager.PARTIAL_WAKE_LOCK, MHTT); wl.acquire(); Have we lost touch with the data? If (isOnline) - false) - connectionStatus - MQTTConnectionStatus. NOTCONNECTED_WAITINGFORINTERNET; Tell the app that we are no
longer connected to broadcastServiceStatus (Connection lost - no network connection); tell the user (during the time when the Activity user interface doesn't work) / / that we can no longer receive messages, notifyUser (Connection is lost - no network connection, MHTT - Connection is lost - no network. //
Wait until the phone gets a network connection again, when we // Network receiver // The most likely reason for this connection East is that we switched from Wi-Fi to the cell, or vice versa- MQTTConnectionStatus.NOTCONNECTED_UNKNOWNREASON; tell the app that we are no longer connected and
are trying to connect broadcastServiceStatus (The connection is lost - reconnection...); Try to reconnect if (connectToBroker) - subscribe to ToTopic (topicName); We're done -- if the phone's off, it's ok for the CPU/ sleep now wl.release (); In /- callback - called, When we receive a message from the server,
the public void publishArrived (theme line, bytes payload, int qos, boolean saved) / We protect from turning off the phone during this / requesting a wake-up lock - we request the minimum possible wake-up / lock - enough to keep the processor running until we have finished powerManager pm
POWER_SERVICE (PowerManager) getSystem WakeLock wl and pm.newWakeLock (PowerManager.PARTIAL_WAKE_LOCK, MHTT); wl.acquire(); | guess all the messages | receive are sent as lines // This is not a MHTT thing - just me doing as the assumption that // the data that | will receive - your
app should not send/receive // lines - anything that can be sent as bytes is a valid String messageBody - a new line (payloadbytes); During periods when the user interface of an application's action doesn't work, the Service // You will need to safely store the data it receives if (addReceivedMessageToStore
(theme, messageBody)) -/ this is a new message - a value that we haven't seen before // Report to the app (for the time when the user interface of activity works) of the received message so that the user interface of the app can be updated with a new data transferReceivedMessage Tell the user (in times
when activity's user interface doesn't work) / that new available notifyUser data (New data, theme, messageBody) have appeared; Receiving this message has kept in touch for us, so / we will use this to postpone the next scheduled ping-ping-ping schedule (); We're done -- if the phone's off, it's ok for the
CPU/ Sleep now erelease ()' } /**/ /* METHODS - WrapperS for some Of the MQTT methods that we use */ /**/ /* * Create a C“ent Connectlon ObJeCt that deflnes our Connectlon to a *
message broker server */ private void defineConnectionToBroker(String brokerHostName) { String mqttConnSpec = tcp:// + brokerHostName + @ + brokerPortNumber; try { // define the connection to the broker mqttClient = MqttClient.createMqttClient(mgttConnSpec, usePersistence); // register this client
app has being able to receive mqttClient.registerSimpleHandler(this); } catch (MqttException e) { // something went wrong! mqttClient = null; connectionStatus = MQTTConnectionStatus.NOTCONNECTED_UNKNOWNREASON; // /I inform the app that we we Connect so that it can update / user interface,
respectively, broadcastServiceStatus (Invalid connection settings); tell the user (in periods when activity user interface doesn't work) / / that we haven't been able to connect notifyUser (You can't connect, MOTT, you can't connect); - (Reconnecting to a message broker) - private boolean connectToBroker ()
- attempt / attempt to connect mqttClient.connect (, cleanStart, keepAliveSeconds); Tell the app that the app has successfully connected broadcastServiceStatus (Connected); We are connected to the Status and M'TTTConnectionStatus connection. CONNECTED; We have to wake up the phone
processor often enough to / keep the messages you can send live messages / We'll schedule the first one now scheduleNextPing(); connectionStatus No MQTTConnectionStatus.NOTCONNECTED_UNKNOWNREASON; Tell the app that we haven't been able to connect so that it can be updated/ user
interface, respectively, broadcastServiceStatus (Can't Connect); to inform the user (during the time when the user interface activity does not work) / / that we have not been able to connect notifyUser (You can't connect, MHTT, Impossible to connect - will be repeated later); We wait for one period to save a
life before / tries again / In real implementation, you probably want to save the account / How many times you try this, and stop trying after a certain number, or the length of time - instead of continuing to try / forever. Failure is often an intermittent network problem, however, so / Some limited attempts is a
good idea scheduleNextPing (); Return is false; Request the broker messages to send messages published with the specified name of the topic. Wildcards are allowed. - private void signed ToTopic (StringName) - boolean, signed - false; if (isAlreadyConnected)) / A quick sanity check - don't try to
subscribe if we have a Log.e connection (mqtt, can't subscribe as we're not related); - more - try the theme string - ThemeNaim; mqttClient.subscribe Subscription is true; - Catch (MqgttNotConnectedException €) - Log.e (mqtt, | can't subscribe - MZTT is not connected, e); - Catch (lllegalArgumentException
e) - Log.e (mqtt, subscription failed - illegal argument, e); - Catch (MgttException e) - Log.e (mqtt, subscription failed - exception of MZTT, e); Unable to subscribe so that the user interface can / display a bug broadcastServiceStatus (Can't subscribe); notify the user (at the time when activity's user interface
is not working) to notify the user (Can't subscribe, MOTT, Fails Issue/private disconnection of the void Drop-droper () // If we were waiting for an Internet connection, the Internet, maybe!) cancelled - we don't need to be told when we're connected now try if (netConnReceiver!)- unregisteredreceiver
(netConnReceiver); netConnReceiver - zero; - if (pingSender!) - unregisteredReceiver (pingSender); pingSender - null; - catch (Exception eee) / probably because we didn't register it Log.e (mqtt, unregistered failure, eee); - try if (mqttClient!) - mqttClient.disconnect (); - catch (MgttPersistenceException e) -
Log.e (mqtt, disconnection failed - exception to perseverance, e)) ; - finally, mqttClient - zero; We can now remove the current notification that alerts users that / There is a long-term current service that works with NotificationManager nm (NotificationManager) getSystemService
(NOTIFICATION_SERVICE); nm.cancelAll (); - Check whether the customer of MZTT believes that he has an active connection with the company / private bulean isAlreadyConnected ((mqgttClient! - null) (mgttClient.isConnected); - Private class BackgroundDataChangelntentReceiver expands
BroadcastReceiver - @Override public void onReceive (Context ctx, Intention intention) / We protect from turning off the phone while we do it / requesting a wake-up lock - we ask for the minimum possible wake call / lock - enough to keep the POWER_SERVICE processor in mode until we legislate
PowerManager pm WakeLock wl and pm.newWakelLock (PowerManager.PARTIAL_WAKE_LOCK, MHTT); wl.acquire(); ConnectManager (CONNECTIVITY_SERVICE) if (cm.getBackgroundDataSetting()/ User allowed background data - we start again - collection !) where we left off in the handleStart
before the definition ConnectionToBroker (brokerHostName); handleStart (intention, 0); - still / The user has disconnected the background data connection Of Status - MQTTConnectionStatus. NOTCONNECTED_DATADISABLED; Update the app to show that the connection has been disabled by
broadcastServiceStatus (Not Connected - Background Data Is Off); disconnection from the broker disconnectFromBroker (); we're done -- if the phone is off, it's ok for CPU/ sleep now. Called in response to a change in network connection - after losing the connection to the server, it allows us to wait until
we will use the @Override connection to the data again Intention Intentions) / We protect against the phone shutdown while we do this / requesting a wake-up lock - we ask for the minimum possible wake-up call ! locking - enough to keep the processor running until we have finished PowerMana
POWER_SERVICE ger WakelLock wl and pm.newWakeLock (PowerManager.PARTIAL_WAKE_LOCK, MHTT); wl.acquire(); if (isOnline) - we have an internet connection - there is another attempt If (connectToBroker)-/ We subscribe to the topic - registration to receive push // notifications with a certain
subscription keyToTopic (topicName); We're done -- if the phone's off, it's ok for the CPU/ sleep now wl.release (); Schedule the next time you want your phone to wake up and ping server broker messages, / private invalid scheduleNextPing () / When the phone is off, the processor can be stopped. This
means that our / code can stop working. When you connect to a broker's message we specify to keep alive / period after which if the client is not contacted / server, even if only with ping, the connection is considered to be / broken. To make sure that the processor is woken at least once during each save
alive / Period, we will plan to wake up manually ping server / Thus keeping the long-term connection open / Usually when using this library of Java customers MZTT, this ping will be / processed for us. Note that this can be caused several times before the next scheduled / ping shot. This is good - the
previously planned will be / cancelled in favor of this. This means that if something else happens during the period to keep alive, / (for example, we get a message from the MOTT), then we start a new save life / period by postponing the next ping. Waiting for pendingintent - Pendingintent.getBroadcast
(this, 0, new intention (MQTT_PING_ACTION), Pendingintent.FLAG_UPDATE_CURRENT); in case it takes us a while to do this, we try to do it! wakeUpTime.add SECOND, keepAliveSeconds); AlarmManager aMgr (AlarmManager) getSystemService (ALARM_SERVICE); aMgr.set
(AlarmManager.RTC_WAKEUP, wakeUpTime.getTimelnMillis (), pendingintent); Used to implement the keep-alive protocol at this level of the Service - it sends a PING message to the server and then plans another ping after the interval, defined keepAliveSeconds (/public class PingSender expands
BroadcastReceiver - @Override public void onReceive (Context Context, Intention) // Please note that we don't need a wake-up lock for this method (although // It is important that the phone does not shut down while we // do so). // According to the documents, alarm manager keeps the alarm order on the
processor until the alarm clock is performed. This ensures that the phone won't sleep until you have it / finished processing the broadcast. / It's good enough for our needs. process it there Log.e (mqtt, ping failed - exception of MZTT, e); suppose the customer connection is broken - the garbage he's trying
to - Catch (MgttPersistenceException el) - Log.e (mqtt, disconnection failed - exception for preservation, el); Reconnect if (connectToBroker)- subscribeToTopic (topicName); Start the next save live chart of the NextPing period - (. e e e e
.............. / NpunoxeHus, KoTopble obpabaTbiBaloT 0O4eHb HEGO/bLUNE 06 bEMBI JaHHbIX - HanpuMmep, 06HOBNEHNS 1 // yBeJOMIEHNS, KOTOPbIE HE AO/HKHbI COXPAHATLCA, ecriv npunoxeHue / TenedoH // nepesanyLieHo 1 // yBegoMAeHUs, KOTOPbIe He JO/MKHbI COXPaHATLCA / MOXET Oka3aTbCs
NPUEeMIEMbIM XPaHUTb 3TN AaHHble B NepeMeHHor B Cnyxoée // 3To To, YUTO A Aenato B 3TOM Npumepe: XpaHUTb UX B JIOKaSIbHOM X3aLw6/ie // ecnu Bbl 06pabaTbiBaeTe 60/blUME 06 bEMbI AAaHHBIX, U/WIN HY)XHO, YTOObI AaHHbIe // COXpaHAInUCh, Aaxe ecnn NpunoxeHne n/vnn tenedoH nepesanyLleHsl, 1o //
Bam Hy)XHO 6e30nacHO XpaHUTb AaHHble rae-To // cMm. // Ana Bawmnx BapuaHTOB XpaHeHUs - y4lnii BbIGOP 3aBUCUT OT Bawumx notpebHocTel // CoxpaHeHHble BHYTPEHHE YacTHble AaHHble<String, string=> HashtableCache - HoBbIli Hashtable<String, string=>(); yacTtHas boolean
addReceivedMessageToStore (String key , 3HaueHune cTpokn) - CTpoka previousValue - null; ecnu (3HaveHne.gnivHa() - 0) - npeapigywasValue - dataCache.remove (kntou); - nHave - previousValue - dataCache.put (ko4 Value); (previousValue.equals (value) - false)); provide a public interface so that
activities that contact the Service can / request access to previously received reports of public invalid relayResimours () - Listing e --It'gt; dataCache.keys (); while (e.g. hasMoreElements) - String nextKey e.nextElement (); NextValue line - dataCache.get (nextKey); BroadcastResivesmesage (nextKey,
nextValue); (i)/-METHODS - Internal Utility Methods Private stringClientld () / Create a unique customer ID if we haven't already done so before, otherwise // Reuse the one we've used to have if (mqttClientld) -/ create a unique customer ID - I'm basing this on a combination // phone device ID and current
timest Stringampstamp Line of android_id - (getContentResolver(), Secure. ANDROID_ID); mqttClientld - TaimwTamn 1 android_id; yceuyeHHbIin - cneyndonkaums M3TT He no3BonseT naeHtudrkaropam KnmeHToB ganHHee 23 chars, ecnv (mqttClientld.length() > MAX_MQTT_CLIENTID _LENGTH) -
mgqttClientld - mqttClientld.substring (0, MAX_MQTT_CLIENTID_LENGTH); Bo3BpaweHne mqttClientld; - yacTHblin 6yneaH ssnsetcaOnline () - ConnectivityManager cm</String> </String,> </String,> </String,> if (cm.getActiveNetworkInfo () oo i .
.. Use the Service Finally, some
comments on how to use this example of service from your Activities. First of all, you have to make sure that you have the necessary permissions to install: zlt;uses-permission android:name.android.permission.android.permission.ACCESS_NETWORK_STATE INTERNET Use-permission
android:name'android.permission.VIBRATE/uses-permission-permission-android:name'android.permission. WAKE_LOCK/use-permission-permission,use-permissiongt; to launch a client's MHT, set the broker's name host and thread line to subscribe to in SharedPreferences. SharedPreferences Settings -
getSharedPreferences (MQTTService.APP_ID, 0); General Training.Editor editor - settings.edit(); editor.putString editor.putString editor.committ Then set up receivers to relay messages to the Service. There are two types of messages that the Service broadcasts: MHTT messages and the current state of
the connection. Private statusUpdateReceiver statusUpdatelntentReceiver; M'TTTMessageReceiverintentReceiver; @Override void onCreate (Bundle savedindreutsstate)... UpdatelntentReceiver status - new UpdateReceiver status The intention ofFilterSFilter is the new IntentFilter

(MQTTService. MQTT_STATUS_INTENT); registerReceiver (statusUpdatelntentReceiver, intentSFilter); MessagelntentReceiver - the new M'TTTMessageReceiver (); The intention ofFilterCFilter is the new IntentFilter (MQTTService. MQTT_MSG_RECEIVED_INTENT); RegistrationResiver
(MessagelntentReceiver, intentCFilter); ... } The public class statusUpdateReceiver expands BroadcastReceiver - @Override public space onReceive (Context, Intention intention) - notificationData - intentExtras (); NewStatus - notificationData.getString (MQTTService. MQTT_STATUS_MSG); ... } - Public
Class MGTMesageResiver Expands BroadcastReceiver - @Override Public Space on Receive (Context, Intention) - Bundle notificationData - intent.getExtras (); NewTopic - notificationData.getString (MQTTService. MQTT_MSG_RECEIVED_TOPIC); NewData line - notificationData.getString
(MQTTService.MQTT_MSG_RECEIVED_MSG); ... } - @Override protected void on The Dest () ... unregisteredResiver (UpdatelntentReceiver status); unregisteredResiver (IntentReceiver); ... } Now you're ready to launch the MZTT service. Svc's intention is new (it is, MGTService.class); startService (svc);
Similarly, for disconnection and stopping: Intention svc and new intentions (this, MHTTService.class); stopService (svc); You probably also want to clear notifications created by the Service: @Override public void onWindowFocusChanged (boolean hasFocus) - super.onWindowFocusChanged (hasFocus);
If NotificationManager mNotificationManager (NoticeManager) getSystemService (NOTIFICATION_SERVICE); mNotificationManager.cancel (MQTTService. MQTT_NOTIFICATION_UPDATE); Finally, you may want to call the Service directly from your activities. Most of them are private, but you can put
some social methods out there. For example, | mentioned earlier in Keeping Your Data Safe that when he started an action, he might want to get all the data he received while you were working. | have added support to the Service for such calls through a local link that can be used as: bindService (new
intention (it, M'TTService.class), new ServiceConnection () - @SuppressWarnings (uncontrolled) @Override public void onServiceConnected (ComponentName className, Final IBinder Service) - M'TTTService mqttService ((((LocalBinder)It;M'TTService))service).getService ();
mqttService.rebroadcastReceivedMessages (); unbindService (it); - @Override public void onDisServiceconnected (Name ComponentName) But what about ... (insert an alternative push framework here - for example, Google Push Notification Service)? | think this post has been around for quite some
time, right? © I've written before about why you can make a PUSH at all. And in this post, I'm focused on those who have decided that they want to use MOTT on Android, and wants some advice on how. I'll leave the debate on how the MOTT compares to the alternative framework another time. | hope
this is useful for people - please let me know in the comments if you use it, or spot something that it could do better. Update 28-May-2011: Updated code to correct the error specified by Ngewi Fet in the comments. Tags: android, Java, mqtt, push, push-notice,It;/M'TTTService

rezazem.pdf

2649982.pdf

f5d445.pdf

go keyboard pro apk

crack wizard of legend

pokemon heart gold download gba4ios

useful spanish phrases for travel
libros sobre liderazgo y motivacion

recover deleted texts app android

hulu live tv guide tonight

coral bells planting instructions
grossman algebra lineal pdf 6ta edicion
heart failure medications guidelines pdf
sokos ac odyssey

classical dynamics of particles and systems pdf
just because episode 1

leigh to manchester guided bus route
what_is_a_news_reporter.pdf
cleo_android_gold_apkpure.pdf
putumayo_colombia_safety.pdf

https://xumogimunosu.weebly.com/uploads/1/3/1/6/131607683/rezazem.pdf
https://jaserasozupog.weebly.com/uploads/1/3/1/4/131454215/2649982.pdf
https://mogilifus.weebly.com/uploads/1/3/0/7/130739831/f5d445.pdf
https://cdn.shopify.com/s/files/1/0484/4909/3797/files/go_keyboard_pro_apk.pdf
https://nudojafobedem.weebly.com/uploads/1/3/1/3/131379550/dukemapa.pdf
https://jeponiruwapin.weebly.com/uploads/1/3/0/7/130776483/kezuxamaz-vagajosilaj-vigozobuxomusiz-vexofo.pdf
https://kupugaxome.weebly.com/uploads/1/3/0/9/130969415/502b7b4a3022.pdf
https://jawasolasazilem.weebly.com/uploads/1/3/1/3/131379174/gevoderovepiru.pdf
https://cdn-cms.f-static.net/uploads/4366055/normal_5f872f3a6f42b.pdf
https://cdn-cms.f-static.net/uploads/4365541/normal_5f86f86048e8f.pdf
https://cdn-cms.f-static.net/uploads/4365620/normal_5f8743a7a4d77.pdf
https://cdn-cms.f-static.net/uploads/4365655/normal_5f8722f75052e.pdf
https://cdn-cms.f-static.net/uploads/4366395/normal_5f873cfbb4b15.pdf
https://kidunaxu.weebly.com/uploads/1/3/1/4/131437100/3476921.pdf
https://fodezamu.weebly.com/uploads/1/3/1/4/131407453/e9ff54.pdf
https://vuxozajuje.weebly.com/uploads/1/3/1/3/131379873/jatelu-zukolugaw.pdf
https://mojivimimujovo.weebly.com/uploads/1/3/0/8/130874437/rarosaj_lemepagega.pdf
https://cdn.shopify.com/s/files/1/0430/5115/5618/files/what_is_a_news_reporter.pdf
https://cdn.shopify.com/s/files/1/0431/8812/5857/files/cleo_android_gold_apkpure.pdf
https://cdn.shopify.com/s/files/1/0481/6633/8711/files/putumayo_colombia_safety.pdf

	Android mqtt push notification app

