

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

HALUK TORAL Petroleum Software Ltd

Project Experience in Large Scale Implementation of MPFMs in an Entire Oil Field

Haluk Toral Petroleum Software Ltd & Arman Ilyassov Gazprom

BADRA OIL FIELD

_	_	0	_	١.	 	_	 -1	

Wassit Province in Eastern Iraq	9 billion barrels in place
Lead operator Gazprom	2 billion \$ investment
Production rates of 22 wells	1000 bbl/d -13000 bbl/d.

TENDER REQUIREMENTS

Requirement

17 off wellhead MPFMs (6" - 8")3 off production line MPFMs (14" - 20")

Uncertainty

Liquid : \pm 5 % Gas : \pm 10 %

Materials

- NACE compliance
- Composition of steel (strict limits on Phosphor, Sulfur)
- Hydrogen induced cracking (HIC)
- Sulphide stress cracking (SSC)
- CVN tests (impact testing)

PROCESS & PVT DATA

Process Data

- Wellhead:
 - 26 bar / 105 C
 - Oil: 600 15,000 bpd
 - Gas 0.1-13 mmscfd

- Production Line:
 - 16bar/40C
 - Oil: 17,000 73,000 bpd
 - Gas: 11-61 mmscfd

PVT Data

- Composition of reservoir fluid (lab analysis provided)
- Saturation pressure at reservoir temperature (eg 214 bara)
- Molecular weight of reservoir fluid (eg 94 g/mole)
- Multistage separation test results (eg GOR=162; API Oil: 35)

SIZING BY PSL

PHASE ENVELOPE BY PSL

WELL HEAD MPFMs

PRODUCTION LINE MPFMs

N,

AERIAL VIEW

BUT; HOW TO WIN THE TENDER – STOP & THINK!

THINGS NOT TO DO 1 – AVOID VERTICAL FLOW

Systems based on vertical flow suffer from the following disadvantages:

- The meter may choke due to elbows.
- Pipe structure may be subjected to strong vibrations under certain flow regimes (as liquid gathers at the riser elbow and gets flushed out).
- Extra pressure drop of about 2 bar due to 4 elbows.
- 14" system even less suitable for vertical orientation than 6"

Competitor MPFM

THINGS NOT TO DO 2 – AVOID COMPLEX FIELD ELECTRONICS

It does not make sense to subject electronics to 80°C sunlight !

- ESMER needs 4-20 mAmp twisted wire cable running from field unit to control room.
- All customised electronics will be in the control room.

THINGS NOT TO DO 3 – DO NOT WASTE YOUR MONEY CHASING AFTER HIGH ACCURACY

THINGS NOT TO DO 4 – AVOID RADIOACTIVE TRANSMITTER

- Go for Equation Of State Modelling

THINGS NOT TO DO 5 – DO NOT RELY ON FLOW LOOP CALIBRATION / TEST.

- In-line MPM calibrations must be tuned-up in the field as per API 2566 recommendations
- Forget the FAT / Loop Test go for the SAT Test.
- PSL will take full responsibility for field calibration and validation.
- In fact, we'll throw in a mobile separator free of charge included in the package.

EsmerMPFM – How Does It Work?

- **Thermodynamic Model** (Cubic EOS based on the reservoir fluid composition) predicts the fluid property parameters by performing a flash calculation at actual conditions and STP <u>assuming thermodynamic equilibrium</u>.
- Hydrodynamic Model (Bernoulli equation) predicts total mass rate <u>assuming homogeneous flow.</u> esmere

EsmerMPFM – How are you going to calibrate?

Three stages of calibration of (any) flowmeter

- Theoretical calibration
- Flow loop calibration
- Field calibration (tune up)

BADRA OIL FIELD MPFM DESIGN & ENGINEERING

N

FIELD CALIBRATION MPFM and Mobile Separator In-line

FIELD IMPLEMENTATION Tune Up Cycle

- *Tune Up:* Data is logged simultaneously from the MPFM and the Separator on a minute by minute basis for the duration of two hours. Liquid and gas samples drawn from the test separator are subjected to PVT analysis.
- *Calibration Update:* Vendor runs Tune Up (MPFM) Simulator which outputs an updated calibration file. The file is transmitted by e-mail and installed on the MPFM by the operator.
- Validation: Operator repeats the well test to validate the updated calibration.

FIELD IMPLEMENTATION Back pressure effect of the Test Separator

FIELD IMPLEMENTATION Example Match between MPFM & Separator

Validation Test (Pre-Tune Up) 28/05

Post-Tune Up Test 30/5

FIELD IMPLEMENTATION Further Example of Match Between MPFM & Separator

.

	P13		BD5		P05		P04			P07			P09	
	02/08/2016	05/04/2017	02/12/2016	16/8/2018	16/02/2016	15/12/2017	19/02/2016	10/05/2017	17/02/2018	26/08/2016	15/05/2017	22/06/2018	20/10/2017	02/11/2018
Oil rate,% Offset	-1.15	0.37	3.43	-2.39	-1.10	-5.57	-9.76	-10.45	-19.24	5.65	-0.79	6.95	4.09	-1.82
Gas rate,% Offset	-1.95	-9.22	-3.13	-6.36	7.94	-8.53	0.84	7.03	3.15	-0.90	-7.05	6.86	-2.57	-10.92

FIELD IMPLEMENTATION Well Head MPFMs (Cumulative) vs CPF

FIELD IMPLEMENTATION Well Head MPFMs vs Production MPFMs

CONCLUSIONS

- MPFMs deploying conventional transmitters can deliver a robust performance and a "reasonable" level of accuracy
- MPFMs can only be effectively validated in-field and their calibration tuned up by means of a test separator.

THANK YOU

