

Kuwait 4th Flow Measurement Technology Conference

3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

AMIN AMIN COO – Belsim Engineering USA, INC

Data Validation and Reconciliation (DVR) Technology Application in Upstream Production Systems

A.Amin – Belsim Engineering, USA T.Jadot – Belsim Engineering, Belgium

WWW.KUWAIT-MEASUREMENT.COM

Measurements are never 100% Correct

- Sensor precision
- Installation induced bias
- Fluctuation of the physical phenomenon
- **Drift** or accuracy bias of the sensor
- Corrections (e.g. flow meters)
- Accuracy of the **acquisition system**
- Fluid sampling issues
- Losses and Leaks

Why Information Redundancy Matters?

- Measurements Random and Systematic errors are related
- Measurements are guilty until proven correct True Value(?)
- Raw measurements can lead to wrong costly decisions
- Most systems contain redundancy but often ignored
- DVR uses Redundancy to unlock:
 - Accuracy Assurance (remove bias)
 - Precision Improvement (reduce uncertainty)

Make Redundancy Your Friend

 $y_i + 1.96\sigma$

(95% CL)

WWW.KUWAIT-MEASUREMENT.COM

Correction

Meas. Value

True Value

*y*_i −1.96**σ** (95% CL)

Redundancy and Reconciliation

Produces a *single set of coherent data* representing the most probable process state

Process Data Integration & Surveillance - Field Cas

- Location: North Sea
- First oil: August 2014
- Gravity based structure
- 4 oil wells, 1 water injection well

Implementation: Virtual Flow Metering

- Use of downhole measurements and equations to compute flow rate estimates
- Reconcile all these estimates into **one single validated flow rate**

WWW.KUWAIT-MEASUREMENT.COM

10

Implementation: Process Modeling

- The **whole process** is modeled, from the production platform to the separation platform
- Mass and energy and compounds balances are maintained through the whole process, therefore linking the well production to process facilities

Virtual Flow Metering Applications

• VALI proved able to fill the gap between the test periods, leading to better allocation of the total production

Downhole Surveillance

 Two of the wells presented a lot of penalty around their electrical submersible pumps (ESP)

WWW.KUWAIT-MEASUREMENT.COM

a1-5

A1-WELL

A1-SP-ROU

8

A1-VLP-WELL

a1-well-q

A1-ESPMODE-V1

Summary

- **DVR is Core Modeling Engine** for many upstream applications
- <u>Examples</u>: production monitoring, system health check, well-process integration, multiphase validation, allocation, predictive maintenance....
 - Uses ALL measurable variables to improve process accuracy and precision (DP, P&T, flow, phase fractions, composition..)
 - o Integrates ALL data from VFM, MPFM, Subsea, Surface Process
 - o Integrates thermodynamic models (fluid properties, constraints)
 - o Effective in localizing **bias/leaks** (results resilient to errors)
 - o Enables Condition-based Maintenance (CBM reduces Opex)
 - Widely used in **downstream**, petrochemical and **power/nuclear** plants
 - o Governed by German Engineering Standard VDI-2048

Enables the use of ALL measurement data with <u>CONFIDENCE</u>

DVR White Paper

Theory and Case Studies

<u>A FIRST by SPE</u>

SPE Multiphase and Wet Gas Metering in Conventional and Unconventional Data Driven Environment

Workshop - Galveston Texas, 28-29 Jan 2020

THANK YOU

