

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

HANAN ALGHASRA Schlumberger Testing Engineer

Advanced Dual-Energy Multiphase Flow Meter Performance in Challenging Environment

Types of Meters
Technology Overview
Principle of Measurements
Data Case Studies

Mobile Test Units

- Less HSE concerns
- ✓ Smaller footprint
- Shorter rig-up, preparation, and rigdown Duration
- Less subject to human error
- Accurate flow rate measurements during stable or unstable conditions

- ✓ WP: 5000 psi* (6.5k psi Optional)
 ✓ Sizee: 20, 52, 88 mm
- ✓ Sizes: 29, 52, 88 mm

- ✓ WP: 1440 psi
- ✓ Sizes: 19, 29, 40 and 65mm (SLM or DLM)
- ✓ Integrated bypass manifold on the skid
- ✓ Dual leg options

Permanent Meters

- ✓ Surface (topside)
- ✓ Product belongs to client
- ✓ Sizes: 29, 52, 65 & 88 mm

- ✓ Surface (topside)
- ✓ WP: 5000 psi
- ✓ Sizes: 19, 29, 40 & 65 mm

Principle of MPFM

- ✓ 19 & 40 mm independent meters mounted on a skid
- Venturi selection based on well condition

Case Study 1

Well	: RA-0285
Formation	: Middle Marrat
Interval	: 15,370' - 15,640' MD

					Zonal w	ater produ	uction	Zonal o			
	From ft	To ft	Temperature °F	Pressure psia	dQw res. B/D	dQw s.c. STB/D	%	dQo res. B/D	dQo s.c. STB/D	%	PERF #
Inflow 1	15409	15418.1	284.6	6659.2	111	105	13	26	13	18	
Inflow 2	15419.7	15428.1	284.8	6674.1	0	0	0	0	0	0	
Inflow 3	15432	15449.8	284.8	6678.8	0	0	0	0	0	0	
Inflow 4	15450.7	15456.7	284.8	6688.8	0	0	0	0	0	0	PERFI
Inflow 5	15459.9	15478.7	284.8	6692.7	728	685	83	111	55	74	1
Inflow 6	15485.2	15489	283.9	6703.5	0	0	0	0	0	0	
Inflow 7	15573	15613	284.1	6722.5	31	29	4	11	6	8	PERF 2

870

820

149 73

Totals

						MPFN	Л						
Schlumb	lerger			RAL	Kuwait (JDHATAIN	Oil Comp / RA-028	bany 35 T / Vx	#5			Main Resu	lt	
										Job No.: Test Date: WT Supervise Unit Number	or name:	SLBT-17004 7-Feb-17 Mostafa/Raf Vx#5	9 iael
Flow period/	Start da	ite / time	End da	te / time	Test Duration	Choke Size	WHT	WHP	Flow Line Pressure	Critical flow	DownStream Pressure	CO2 (in Gas)	H2S (in Gas)
String	yyyy.mm.	dd hh:mm	yyyy.mm.	dd hh:mm	hrs	/64	deg F	psig	psig	Y/N	psig	%	ppm
1	2017/02	/08 16:00	2017/02	09 01:45	9:45	32	154	192	Pit	Y	15	3.00	140,000
3													<u> </u>
Flow period /	Oil Q	Water Q	Total Liquids	Gas Q	GOR 1	GOR 2	Total GOR	BS&W	Water salinity	SG OIL	OIL	SG WATER	SG GAS
Sung	bbls/day	bbls/day	bbls/day	MMSCF/day	SCF/bbl	SCF/bbl	SCF/bbl	%	ppm	@ 60 deg F	Deg API	@ 60 deg F	(air=1)
	73	863	936	0.117	1583	16	1589	92.2	230,000	0.795	46	1.158	0.950
						 		 			<u> </u>	 	
		Water Q	Total O		рН								
Flow period / String	Oil Q /L/C	/L/C	/L/C	Gas Q /L/C	pii								
1	bbls/day	bbls/day	bbls/day	MMSCF/day	7								<u> </u>
	76	8//	953	0.0660									
											1		
			l	╉────╂			┥───┦	l			<u> </u>		
	l		l	╂────╂		┨─────	╉───┦	╂────			+		
				1							1		<u> </u>
General co	mments	Main result i wireline PLT	s taken from . No FID bee	the last readin n applied.	g of the flow p	eriod. Produ	uction GOR	Test is co	nducted on 3	2/64" Fixed o	hoke along wit	th Schlumbe	erger

Case S	Study 2
--------	---------

Well	: NWRA-0007
Formation	: Lower & Middle Marra
Interval	: 16,315 – 16,360 ft MD
	16,582 – 16,672 ft MD

PLT X Flowing Survey @ 16/64" – Flow Profile

	4	2	2		-		
W		-					
Flowir	na Surv	ey @	24/6	54" -	Flow I	Profil	е

ł

					Zonal wa	ter produ	ction	Zonal o	oil produc	tion	Zonal	gas produ	ction
	From ft	To ft	Temperature °F	Pressure psia	dQw res. B/D	dQw s.c. STB/D	%	dQo res. B/D	dQo s.c. STB/D	%	d Qg res. B/D	dQg s.c. Mscf/D	%
Inflow 1	16315	16332.1	283.8	6253.9	25	24	100	2188	1091	100	0	1854.42	100
Inflow 2	16335.4	16360	283.7	6263.9	0	0	0	0	0	0	0	0.00	0
Inflow 3	16582	16672	285.8	6313.8	0	0	0	0	0	0	0	0.00	0
			Totals		25	24		2188	1091		0	1854.42	

Flowing Survey @ 24/64" – Flow Profile

					Zonal wa	iter produ	ction	Zonal o	oil produc	tion	Zonal	gas produ	ction
	From ft	To ft	Temperature °F	Pressure psia	dQw res. B/D	dQw s.c. STB/D	%	dQo res. B/D	dQo s.c. STB/D	%	dQg res. B/D	dQg s.c. Mscf/D	%
Inflow 1	16315	16331.6	283.6	5625.4	21	20	100	3507	1727	100	0	2936.48	100
Inflow 2	16338.4	16360	283.3	5635.3	0	0	0	0	0	0	0	0.00	0
Inflow 3	16582	16672	285.7	5697.4	0	0	0	0	0	0	0	0.00	0
			Totals		21	20		3507	1727		0	2936.48	
-						4							

MPFM

Schlumb	erger				Kuwait (NWRA / I	Oil Comp NWRA-00	any 07 T				Main Resul	t	
	I									Job No.: Test Date: WT Superviso Unit Number	r name:	SLBT-16010 27-Jan-16 Mostafa Elge Vx#5	2 endi
low period/	Start da	te / time	End dat	te / time	Test Duration	Choke Size	WHT	WHP	Flow Line Pressure	Critical flow	DownStream Pressure	CO2 (in Gas)	H2S (in Gas)
String	yyyy.mm.	dd hh:mm	yyyy.mm.	dd hh:mm	hrs	/64	deg F	psig	psig	Y/N	psig	%	ppm
1	2016/01/	29 19:15	2016/01/	30 07:45	12:30	16	135	2726	1104	Y	1104	2.00	40,000
2	2016/01/	/30 08:00	2016/01/	30 14:00	6:00	24	164	2250	1290	Y	1290	2.00	40,000
3	2016/01/	/30 14:00	2016/01/	30 21:00	7:00	32	187	1677	1276	N	1276	2.00	40,000
4	2016/01/	/30 21:20	2016/01/	31 09:20	12:00	SI	NA	2922	NA	NA	NA	NA	NA
Flow period /	Oil Q	Water Q	Total Liquids	Gas Q	GOR 1	GOR 2	Total GOR	BS&W	Water salinity	SG OIL	OIL	SG WATER	SG GAS
String	bbls/day	bbls/day	bbls/day	MMSCF/day	SCF/bbl	SCF/bbl	SCF/bbl	%	ppm	@ 60 deg F	Deg API	@ 60 deg l	(air=1)
1	1117	12	1128	1.646	1077	399	1476	1.1	260,000	0.796	46	1.128	0.753
2	2000	0	2000	2.896	1090	359	1449	0.0	NA	0.796	46	NA	0.749
3	2646	0	2646	3.998	1202	310	1512	0.0	NA	0.796	46	NA	0.745
low period /	Oil Q /L/C	Water Q /L/C	Total Q /L/C	Gas Q /L/C	рН								
Sung	bbls/day	bbls/day	bbls/day	MMSCF/day									
1					7								
2					NA								
3					NA								
General co	mments	Values are ta on 16/64" Fix Salinity and P	ken as AVERAC ed choke as FP PH are taken eve	GE of each flow #1, 24/64" Fixed ary one hour, H2	periods or the ne d choke as FP#2 2S, CO2 and Gas	arest available and 32/64" Fix gravity are tal	e value where ed choke as ken twice on	e applicable. FP#3 as pe each choke	Well was initia r test program,	ally shut in. Proc well wasthen s	duction GOR Te hut in for 12 ho	st was being urs as FP#4.	conducted BS&W,

Well	: UN-0009
Formation	: Lower Fars

Accurate Measurement in Unconsolidated Low Rate Heavy Oil

Well	: UN-0121
Formation	: Lower Fars

Accurate Measurement in Unconsolidated Low Rate Heavy Oil

WWW.KUWAIT-MEASUREMENT.COM

Schlumberger-Private

THANK YOU

