Reconciling Flow Measurement Errors of a Gas Compression Unit

By Mohit Narain, Jatin Ponda & GNV Sridhar, KOC

Kuwait 4th Flow Measurement <u>Technology Conference</u> 03rd-05th Dec 2019

Kuwait 4th Flow Measurement Technology Conference

Contents

• Objective

- What is Data Reconciliation & its significance
- Errors in measurement
- Probability Density Function Bell Curve
- Basic concept of data reconciliation
- Effect of standard deviation on data reconciliation
- Flow reconciliation applied to a compressor unit
- Observations & Conclusions

Kuwait 4th Flow Measurement Technology Conference

Objective

- Objective: To carry out the data reconciliation on a compressor system
- Reconciliation literally means a process through which people with different opinions agree in a friendly manner

Kuwait 4th Flow Measurement Technology Conference Cartoon Courtesy: Pixabay.org 3

What is Data Reconciliation (DR)

Data reconciliation (DR) is a process of rectifying erroneous data

System Constraints are satisfied

Uses mathematical modelling

Works best with Random Errors

Wonder what is data reconciliation

Δ

Kuwait 4th Flow Measurement Technology Conference

Cartoon Courtesy: Pixabay.org

Data Reconciliation

- Data Reconciliation is basically a constrained optimization problem
- The objective function is optimized (error minimized)
- The constraints are satisfied (A+B=C)

Need for Data Reconciliation

Measured Data may contain errors

Such data is often non repeatable

Some data may be missing or has not been measured

Data may not satisfy Process Constraints

The Control of the Co

Hey, I lost 10

lbs

Kuwait 4th Flow Measurement Technology Conference Cartoon Courtesy: Pixabay.org

6

Data Reconciliation (DR) for Compressor

- Differences between true and measured values need to be minimized
- Constraints of mass and energy balances need to be fulfilled

Custody Transfer

Most critical requirement of Data Reconciliation is for custody transfer application

It may benefit and mutually satisfy both parties involved as custody transfer often is linked to fiscal transactions

Repeatability & Accuracy

Random Errors

Random errors are the Instrument indicated error as no Instrument is perfect

Expected to be scattered in a Normal or Gaussian Distribution

DR is best applicable to random errors

Kuwait 4th Flow Measurement Technology Conference

11

Instrument Accuracy

Accuracy of a meter is often defined to be +/- 1-3% (avg +-2%) as a percentage of full scale reading with a confidence level of 95%

If the full scale reading which the Instrument can read is 1500 kg, and its error is +/-1%, then it can be said with a 95% confidence that the true value shall lie within +/- 15 kgs of the measured value

The accuracy may sometimes also be specified in terms of the actual reading.

Probability Density Function-Bell Curve

- Horizontal axis is the range of possible numeric outcomes
- Vertical axis is the probability of outcome

Probability Density Function & Confidence Levels

F(X)= (1/($\sigma * \sqrt{(2^*\Pi)}$) *Exp (-(X- μ)²/(2* σ²))

95% Confidence Level:
95% probability for which
P(X1<X<X2) =0.95
X= measured value

In gaussian distribution curve $> X1 = \mu - 1.96\sigma (\sim 2\sigma)$ $> X2 = \mu + 1.96\sigma (\sim 2\sigma)$

Kuwait 4th Flow Measurement Technology Conference

14

Standard Deviation

The Weight of a block is measured as follows:		
S.No	Weight, in gms, Xi	
1	50.8	
2	51.4	
3	49.6	
4	48.7	
5	50.2	
6	49.4	
7	49.9	
Sum= ∑Xi =	350	
Mean =µ= ∑Xi /n =	50	
Std. Dev=σ= √∑(Xi-μ)²/(n-1)	0.9000	

The Probability Function Values

 $(A) = + \sqrt{(0 + TT)} + T_{10} + ((V_{10})) + (20)$

$F(X) = (1/(\sigma ~ \sqrt{2^{*}})) ~ Exp(-(X - \mu)^{2}/(2^{*} \sigma^{2}))$			
Х	μ	σ	F(X)
48	50	0.9	0.05398
48.5	50	0.9	0.129492
49	50	0.9	0.241922
49.5	50	0.9	0.351994
50	50	0.9	0.398862
50.5	50	0.9	0.351994
51	50	0.9	0.241922
51.5	50	0.9	0.129492
52	50	0.9	0.05398

16

Probability of measured variables

Our interest: Probability of finding measured variables in a range (between an X1 & X2)
P (X₁< X <X₂) = (1/(σ* √(2*Π))* Exp (-(X-μ)²/(2* σ²))

Probability-Measured values

> The probability that a measured value will fall between +/-1 σ of the mean i.e between 49.1 & 50.9 50.9 (1/($\sigma^* \sqrt{(2^*\Pi)}$) * $\int Exp(-(X-\mu)^2/(2^*\sigma^2)) = 0.6827=68.27\%$ 49.1

Likewise, Probability that the measured value will fall between +/- 2σ i..e. between 48.2 and 51.8= 95.45%

Likewise, Probability that the measured value will fall between +/- 3σ i..e. between 47.3 and 52.7= 99.7%

Data Reconciliation – Basic Concept

	Stream	Std Dev	Measured Flow, kg/Hr	Reconc . Flow
$F1 \longrightarrow F4$	F1	5	100	<mark>98.69</mark>
F2 Proc.Eq	F2	8	150	<mark>146.65</mark>
$F3 \longrightarrow F5$	F3	6	350	<mark>348.12</mark>
	F4	9	291	<mark>295.23</mark>
	F5	10	293	<mark>298.23</mark>
Reconc. Total=593.46	Obj Fn	0.83660	Epsilon	3.6E-11

• Let reconciled flow rates =F1*, F2*,F3*, F4*& F5*

 Minimize (((100-F1*)/5)^2)+ (((150-F2*)/8)^2)+ (((350-F3*)/6)^2) + (((291-F4*)/9)^2)+ (((293-F5*)/10)^2)

Subject to the constraints: ((F1*+F2*+F3*-F4*-F5*)^2)< (1*e-06)</p>

Kuwait 4th Flow Measurement Technology Conference

Data Reconciliation –Effect of Std. Dev.

	Stream	Std Dev	Measured Flow, kg/Hr	Reconc . Flow
$F1 \longrightarrow F4$	F1	10	100	<mark>94.77</mark>
F2 Proc.Eq	F2	9	150	<mark>145.76</mark>
F3 → F5	F3	8	350	<mark>346.66</mark>
	F4	5	291	<mark>292.31</mark>
	F5	6	293	<mark>294.88</mark>
Reconc. Total=587.19	Obj Fn	0.83660	Epsilon	3.43E-10

• Let reconciled flow rates =F1*, F2*,F3*, F4*& F5*

- Minimize (((100-F1*)/10)^2)+ (((150-F2*)/9)^2)+ (((350-F3*)/8)^2) + (((291-F4*)/5)^2)+ (((293-F5*)/6)^2)
- Subject to the constraints: ((F1*+F2*+F3*-F4*-F5*)^2)< (1*e-06)</p>

Weighted Least squares method

Monitors the gradient or slope of the objective function as the input values (or decision variables) change

an optimum solution is obtained when the partial derivatives are equal to zero.

- input values (or decision variables) change to final reconciled values
- Can get trapped into a local minima-depending on initial conditions
- > Global Minima is achieved only when epsilon $<10^{-6}$

Kuwait 4th Flow Measurement Technology Conference

21

Data Reconciliation- Process Software Solver

The mass and energy balances were ensured

Achieves convergence (global minima) with any random initial conditions

Global Minima

Kuwait 4th Flow Measurement Technology Conference

22

Compressor System-Blind data used

Data Reconciliation-Weighted Least Squares

- > The weights are used as the inverse of variances (w=1/ σ^2)
- > Minimize: \sum ((Measured value-Reconciled Value)/ σ)²
- Constraints: (F1+F2-F3-F4)² < Epsilon (typically 10⁻⁶)
 - $(F3-F2+F7-F6-F5)^2 < Epsilon$

 $(F6-F7-F8-F9)^2 < Epsilon$

Comparison of Excel Solver results vs Software

Para	meters Reconciled	Excel Solver	Process Software
F1	Feed	5142	5176
F2	Recycle-1	569	569
F3	Feed to 1 st Comp	5711	5745
F4	1st Stg.Suc Scrub Liq	0	0
F5	1st Stg Disch Scrub Liq	77.3	76.1
F6	Feed to 2nd Comp	5626	5660
F7	2nd stg. Recycle	561	561
F8	2nd Stg Scrubber Liq	101	130
F9	Export Gas	4963	4970
	Constraint	<10 ⁻⁸	< 10 ⁻¹⁰

Observations & Conclusions

- It can be seen that the results of weighted least squares method are based only on material balances and ignores the energy balances (i.e.purely on measured flow data)
- The Process Solver carries out the reconciliation with the both mass and energy Balances
- Though the weighted least squares method results are based only on measured flow rates, measured data is based on heat & material balance.
- Hence the difference between the weighted least squares method and the Process Software reconciliation software is not significant (within 2-3 standard deviations) of any measured variable

Thank You

Kuwait 4th Flow Measurement Technology Conference

27