
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 1

librosa: Audio and Music Signal Analysis in Python
Brian McFee¶‖∗, Colin Raffel§, Dawen Liang§, Daniel P.W. Ellis§, Matt McVicar‡, Eric Battenberg∗∗, Oriol Nieto‖

F

Abstract—This document describes version 0.4.0 of librosa: a Python pack-
age for audio and music signal processing. At a high level, librosa provides
implementations of a variety of common functions used throughout the field of
music information retrieval. In this document, a brief overview of the library’s
functionality is provided, along with explanations of the design goals, software
development practices, and notational conventions.

Index Terms—audio, music, signal processing

Introduction

The emerging research field of music information retrieval
(MIR) broadly covers topics at the intersection of musicol-
ogy, digital signal processing, machine learning, information
retrieval, and library science. Although the field is relatively
young—the first international symposium on music informa-
tion retrieval (ISMIR)1 was held in October of 2000—it is
rapidly developing, thanks in part to the proliferation and
practical scientific needs of digital music services, such as
iTunes, Pandora, and Spotify. While the preponderance of MIR
research has been conducted with custom tools and scripts
developed by researchers in a variety of languages such as
MATLAB or C++, the stability, scalability, and ease of use
these tools has often left much to be desired.

In recent years, interest has grown within the MIR commu-
nity in using (scientific) Python as a viable alternative. This has
been driven by a confluence of several factors, including the
availability of high-quality machine learning libraries such as
scikit-learn [Pedregosa11] and tools based on Theano
[Bergstra11], as well as Python’s vast catalog of packages
for dealing with text data and web services. However, the
adoption of Python has been slowed by the absence of a
stable core library that provides the basic routines upon which
many MIR applications are built. To remedy this situation,
we have developed librosa:2 a Python package for audio and
music signal processing.3 In doing so, we hope to both ease
the transition of MIR researchers into Python (and modern
software development practices), and also to make core MIR

∗ Corresponding author: brian.mcfee@nyu.edu
¶ Center for Data Science, New York University
‖ Music and Audio Research Laboratory, New York University
§ LabROSA, Columbia University
‡ Department of Engineering Mathematics, University of Bristol
∗∗ Silicon Valley AI Lab, Baidu, Inc.

Copyright c© 2015 Brian McFee et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

techniques readily available to the broader community of
scientists and Python programmers.

Design principles

In designing librosa, we have prioritized a few key concepts.
First, we strive for a low barrier to entry for researchers
familiar with MATLAB. In particular, we opted for a relatively
flat package layout, and following scipy [Jones01] rely upon
numpy data types and functions [VanDerWalt11], rather than
abstract class hierarchies.

Second, we expended considerable effort in standardizing
interfaces, variable names, and (default) parameter settings
across the various analysis functions. This task was compli-
cated by the fact that reference implementations from which
our implementations are derived come from various authors,
and are often designed as one-off scripts rather than proper
library functions with well-defined interfaces.

Third, wherever possible, we retain backwards compatibility
against existing reference implementations. This is achieved
via regression testing for numerical equivalence of outputs.
All tests are implemented in the nose framework.4

Fourth, because MIR is a rapidly evolving field, we rec-
ognize that the exact implementations provided by librosa
may not represent the state of the art for any particular task.
Consequently, functions are designed to be modular, allowing
practitioners to provide their own functions when appropriate,
e.g., a custom onset strength estimate may be provided to the
beat tracker as a function argument. This allows researchers to
leverage existing library functions while experimenting with
improvements to specific components. Although this seems
simple and obvious, from a practical standpoint the monolithic
designs and lack of interoperability between different research
codebases have historically made this difficult.

Finally, we strive for readable code, thorough documen-
tation and exhaustive testing. All development is conducted
on GitHub. We apply modern software development prac-
tices, such as continuous integration testing (via Travis5) and
coverage (via Coveralls6). All functions are implemented in
pure Python, thoroughly documented using Sphinx, and in-
clude example code demonstrating usage. The implementation
mostly complies with PEP-8 recommendations, with a small

1. http://ismir.net
2. https://github.com/bmcfee/librosa
3. The name librosa is borrowed from LabROSA : the LABoratory for the

Recognition and Organization of Speech and Audio at Columbia University,
where the initial development of librosa took place.

4. https://nose.readthedocs.org/en/latest/

mailto:brian.mcfee@nyu.edu
http://ismir.net
https://github.com/bmcfee/librosa
https://nose.readthedocs.org/en/latest/


2 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

set of exceptions for variable names that make the code
more concise without sacrificing clarity: e.g., y and sr are
preferred over more verbose names such as audio_buffer
and sampling_rate.

Conventions

In general, librosa’s functions tend to expose all relevant
parameters to the caller. While this provides a great deal
of flexibility to expert users, it can be overwhelming to
novice users who simply need a consistent interface to process
audio files. To satisfy both needs, we define a set of general
conventions and standardized default parameter values shared
across many functions.

An audio signal is represented as a one-dimensional numpy
array, denoted as y throughout librosa. Typically the signal y is
accompanied by the sampling rate (denoted sr) which denotes
the frequency (in Hz) at which values of y are sampled. The
duration of a signal can then be computed by dividing the
number of samples by the sampling rate:
>>> duration_seconds = float(len(y)) / sr

By default, when loading stereo audio files, the
librosa.load() function downmixes to mono by
averaging left- and right-channels, and then resamples the
monophonic signal to the default rate sr=22050 Hz.

Most audio analysis methods operate not at the native
sampling rate of the signal, but over small frames of the
signal which are spaced by a hop length (in samples). The
default frame and hop lengths are set to 2048 and 512 samples,
respectively. At the default sampling rate of 22050 Hz, this
corresponds to overlapping frames of approximately 93ms
spaced by 23ms. Frames are centered by default, so frame
index t corresponds to the slice:
y[(t * hop_length - frame_length / 2):

(t * hop_length + frame_length / 2)],

where boundary conditions are handled by reflection-padding
the input signal y. Unless otherwise specified, all sliding-
window analyses use Hann windows by default. For analyses
that do not use fixed-width frames (such as the constant-
Q transform), the default hop length of 512 is retained to
facilitate alignment of results.

The majority of feature analyses implemented by
librosa produce two-dimensional outputs stored as
numpy.ndarray, e.g., S[f, t] might contain the
energy within a particular frequency band f at frame index
t. We follow the convention that the final dimension provides
the index over time, e.g., S[:, 0], S[:, 1] access
features at the first and second frames. Feature arrays are
organized column-major (Fortran style) in memory, so that
common access patterns benefit from cache locality.

By default, all pitch-based analyses are assumed to be
relative to a 12-bin equal-tempered chromatic scale with a
reference tuning of A440 = 440.0 Hz. Pitch and pitch-
class analyses are arranged such that the 0th bin corresponds
to C for pitch class or C1 (32.7 Hz) for absolute pitch
measurements.

5. https://travis-ci.org
6. https://coveralls.io

Package organization

In this section, we give a brief overview of the structure
of the librosa software package. This overview is intended
to be superficial and cover only the most commonly used
functionality. A complete API reference can be found at
https://bmcfee.github.io/librosa.

Core functionality

The librosa.core submodule includes a range of com-
monly used functions. Broadly, core functionality falls into
four categories: audio and time-series operations, spectro-
gram calculation, time and frequency conversion, and pitch
operations. For convenience, all functions within the core
submodule are aliased at the top level of the package hierarchy,
e.g., librosa.core.load is aliased to librosa.load.

Audio and time-series operations include functions
such as: reading audio from disk via the audioread
package7 (core.load), resampling a signal at a desired
rate (core.resample), stereo to mono conversion
(core.to_mono), time-domain bounded auto-correlation
(core.autocorrelate), and zero-crossing detection
(core.zero_crossings).

Spectrogram operations include the short-time Fourier trans-
form (stft), inverse STFT (istft), and instantaneous
frequency spectrogram (ifgram) [Abe95], which provide
much of the core functionality for down-stream feature anal-
ysis. Additionally, an efficient constant-Q transform (cqt)
implementation based upon the recursive down-sampling
method of Schoerkhuber and Klapuri [Schoerkhuber10] is
provided, which produces logarithmically-spaced frequency
representations suitable for pitch-based signal analysis. Fi-
nally, logamplitude provides a flexible and robust imple-
mentation of log-amplitude scaling, which can be used to avoid
numerical underflow and set an adaptive noise floor when
converting from linear amplitude.

Because data may be represented in a variety of time or fre-
quency units, we provide a comprehensive set of convenience
functions to map between different time representations: sec-
onds, frames, or samples; and frequency representations: hertz,
constant-Q basis index, Fourier basis index, Mel basis index,
MIDI note number, or note in scientific pitch notation.

Finally, the core submodule provides functionality to esti-
mate the dominant frequency of STFT bins via parabolic in-
terpolation (piptrack) [Smith11], and estimation of tuning
deviation (in cents) from the reference A440. These functions
allow pitch-based analyses (e.g., cqt) to dynamically adapt
filter banks to match the global tuning offset of a particular
audio signal.

Spectral features

Spectral representations—the distributions of energy over a
set of frequencies—form the basis of many analysis tech-
niques in MIR and digital signal processing in general. The
librosa.feature module implements a variety of spectral
representations, most of which are based upon the short-time
Fourier transform.

7. https://github.com/sampsyo/audioread

https://travis-ci.org
https://coveralls.io
https://bmcfee.github.io/librosa
https://github.com/sampsyo/audioread


LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 3

0

2756

5512

8268

11025
H

z

STFT log power

-60 dB
-54 dB
-48 dB
-42 dB
-36 dB
-30 dB
-24 dB
-18 dB
-12 dB
-6 dB
 0 dB

0

799

1905

4462

10453

H
z

Mel spectrogram log power

-60 dB
-54 dB
-48 dB
-42 dB
-36 dB
-30 dB
-24 dB
-18 dB
-12 dB
-6 dB
 0 dB

C

D

E
F

G

A

B

Pi
tc

h 
cl

as
s

Chroma

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

5x

5y

m3x

m3y

M3x

M3y

To
nn

et
z

Tonnetz

0.45
0.30
0.15

0.00
0.15
0.30
0.45
0.60

Fig. 1: First: the short-time Fourier transform of a
20-second audio clip (librosa.stft). Second: the
corresponding Mel spectrogram, using 128 Mel bands
(librosa.feature.melspectrogram). Third: the
corresponding chromagram (librosa.feature.chroma_cqt).
Fourth: the Tonnetz features (librosa.feature.tonnetz).

The Mel frequency scale is commonly used to represent
audio signals, as it provides a rough model of human fre-
quency perception [Stevens37]. Both a Mel-scale spectro-
gram (librosa.feature.melspectrogram) and the
commonly used Mel-frequency Cepstral Coefficients (MFCC)
(librosa.feature.mfcc) are provided. By default, Mel
scales are defined to match the implementation provided by
Slaney’s auditory toolbox [Slaney98], but they can be made
to match the Hidden Markov Model Toolkit (HTK) by setting
the flag htk=True [Young97].

While Mel-scaled representations are commonly used to
capture timbral aspects of music, they provide poor reso-
lution of pitches and pitch classes. Pitch class (or chroma)
representations are often used to encode harmony while
suppressing variations in octave height, loudness, or timbre.
Two flexible chroma implementations are provided: one uses
a fixed-window STFT analysis (chroma_stft)8 and the
other uses variable-window constant-Q transform analysis
(chroma_cqt). An alternative representation of pitch and
harmony can be obtained by the tonnetz function, which es-
timates tonal centroids as coordinates in a six-dimensional in-
terval space using the method of Harte et al. [Harte06]. Figure
1 illustrates the difference between STFT, Mel spectrogram,
chromagram, and Tonnetz representations, as constructed by
the following code fragment:9

>>> filename = librosa.util.example_audio_file()
>>> y, sr = librosa.load(filename,
... offset=25.0,
... duration=20.0)
>>> spectrogram = np.abs(librosa.stft(y))

>>> melspec = librosa.feature.melspectrogram(y=y,
... sr=sr)
>>> chroma = librosa.feature.chroma_cqt(y=y,
... sr=sr)
>>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr)

In addition to Mel and chroma features, the feature
submodule provides a number of spectral statistic
representations, including spectral_centroid,
spectral_bandwidth, spectral_rolloff
[Klapuri07], and spectral_contrast [Jiang02].10

Finally, the feature submodule provides a few func-
tions to implement common transformations of time-series
features in MIR. This includes delta, which provides a
smoothed estimate of the time derivative; stack_memory,
which concatenates an input feature array with time-lagged
copies of itself (effectively simulating feature n-grams); and
sync, which applies a user-supplied aggregation function
(e.g., numpy.mean or median) across specified column
intervals.

Display

The display module provides simple interfaces to visu-
ally render audio data through matplotlib [Hunter07].
The first function, display.waveplot simply renders the
amplitude envelope of an audio signal y using matplotlib’s
fill_between function. For efficiency purposes, the signal
is dynamically down-sampled. Mono signals are rendered
symmetrically about the horizontal axis; stereo signals are
rendered with the left-channel’s amplitude above the axis
and the right-channel’s below. An example of waveplot is
depicted in Figure 2 (top).

The second function, display.specshow wraps mat-
plotlib’s imshow function with default settings (origin and
aspect) adapted to the expected defaults for visualizing
spectrograms. Additionally, specshow dynamically selects
appropriate colormaps (binary, sequential, or diverging) from
the data type and range.11 Finally, specshow provides a
variety of acoustically relevant axis labeling and scaling pa-
rameters. Examples of specshow output are displayed in
Figures 1 and 2 (middle).

Onsets, tempo, and beats

While the spectral feature representations described above
capture frequency information, time information is equally
important for many applications in MIR. For instance, it can
be beneficial to analyze signals indexed by note or beat events,
rather than absolute time. The onset and beat submodules
implement functions to estimate various aspects of timing in
music.

8. chroma_stft is based upon the reference implementation provided
at http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

9. For display purposes, spectrograms are scaled by
librosa.logamplitude. We refer readers to the accompanying
IPython notebook for the full source code to recontsruct figures.

10. spectral_* functions are derived from MATLAB reference imple-
mentations provided by the METLab at Drexel University. http://music.ece.
drexel.edu/

11. If the seaborn package [Waskom14] is available, its version of
cubehelix is used for sequential data.

http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
http://music.ece.drexel.edu/
http://music.ece.drexel.edu/


4 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

More specifically, the onset module provides two
functions: onset_strength and onset_detect. The
onset_strength function calculates a thresholded spec-
tral flux operation over a spectrogram, and returns a one-
dimensional array representing the amount of increasing spec-
tral energy at each frame. This is illustrated as the blue curve in
the bottom panel of Figure 2. The onset_detect function,
on the other hand, selects peak positions from the onset
strength curve following the heuristic described by Boeck et
al. [Boeck12]. The output of onset_detect is depicted as
red circles in the bottom panel of Figure 2.

The beat module provides functions to estimate the global
tempo and positions of beat events from the onset strength
function, using the method of Ellis [Ellis07]. More specifically,
the beat tracker first estimates the tempo, which is then used
to set the target spacing between peaks in an onset strength
function. The output of the beat tracker is displayed as the
dashed green lines in Figure 2 (bottom).

Tying this all together, the tempo and beat positions for an
input signal can be easily calculated by the following code
fragment:

>>> y, sr = librosa.load(FILENAME)
>>> tempo, frames = librosa.beat.beat_track(y=y,
... sr=sr)
>>> beat_times = librosa.frames_to_time(frames,
... sr=sr)

Any of the default parameters and analyses may be overridden.
For example, if the user has calculated an onset strength
envelope by some other means, it can be provided to the beat
tracker as follows:

>>> oenv = some_other_onset_function(y, sr)
>>> librosa.beat.beat_track(onset_envelope=oenv)

All detection functions (beat and onset) return events as frame
indices, rather than absolute timing. The downside of this is
that it is left to the user to convert frame indices back to
absolute time. However, in our opinion, this is outweighed
by two practical benefits: it simplifies the implementations,
and it makes the results directly accessible to frame-indexed
functions such as librosa.feature.sync.

Structural analysis

Onsets and beats provide relatively low-level timing cues
for music signal processing. Higher-level analyses attempt to
detect larger structure in music, e.g., at the level of bars or
functional components such as verse and chorus. While this
is an active area of research that has seen rapid progress in
recent years, there are some useful features common to many
approaches. The segment submodule contains a few useful
functions to facilitate structural analysis in music, falling
broadly into two categories.

First, there are functions to calculate and
manipulate recurrence or self-similarity plots. The
segment.recurrence_matrix constructs a binary
k-nearest-neighbor similarity matrix from a given feature
array and a user-specified distance function. As displayed
in Figure 3 (left), repeating sequences often appear as
diagonal bands in the recurrence plot, which can be used

to detect musical structure. It is sometimes more convenient
to operate in time-lag coordinates, rather than time-time,
which transforms diagonal structures into more easily
detectable horizontal structures (Figure 3, right) [Serra12].
This is facilitated by the recurrence_to_lag (and
lag_to_recurrence) functions.

Second, temporally constrained clustering can be
used to detect feature change-points without relying
upon repetition. This is implemented in librosa by
the segment.agglomerative function, which
uses scikit-learn’s implementation of Ward’s
agglomerative clustering method [Ward63] to partition
the input into a user-defined number of contiguous
components. In practice, a user can override the
default clustering parameters by providing an existing
sklearn.cluster.AgglomerativeClustering
object as an argument to segment.agglomerative().

Decompositions

Many applications in MIR operate upon latent factor represen-
tations, or other decompositions of spectrograms. For exam-
ple, it is common to apply non-negative matrix factorization
(NMF) [Lee99] to magnitude spectra, and analyze the statistics
of the resulting time-varying activation functions, rather than
the raw observations.

The decompose module provides a simple interface to fac-
tor spectrograms (or general feature arrays) into components
and activations:
>>> comps, acts = librosa.decompose.decompose(S)

By default, the decompose() function constructs
a scikit-learn NMF object, and applies its
fit_transform() method to the transpose of S. The
resulting basis components and activations are accordingly
transposed, so that comps.dot(acts) approximates S. If
the user wishes to apply some other decomposition technique,
any object fitting the sklearn.decomposition interface
may be substituted:
>>> T = SomeDecomposer()
>>> librosa.decompose.decompose(S, transformer=T)

In addition to general-purpose matrix decomposition tech-
niques, librosa also implements the harmonic-percussive
source separation (HPSS) method of Fitzgerald [Fitzgerald10]
as decompose.hpss. This technique is commonly used in
MIR to suppress transients when analyzing pitch content, or
suppress stationary signals when detecting onsets or other
rhythmic elements. An example application of HPSS is illus-
trated in Figure 4.

Effects

The effects module provides convenience functions for
applying spectrogram-based transformations to time-domain
signals. For instance, rather than writing

>>> D = librosa.stft(y)
>>> Dh, Dp = librosa.decompose.hpss(D)
>>> y_harmonic = librosa.istft(Dh)

one may simply write



LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 5

y (mono signal)

0

452

1098

2196

11025

H
z

STFT log power

25.00s 27.87s 30.73s 33.60s 36.46s 39.33s 42.20s 45.06s

Onset strength
Detected note onsets
Detected beats

Fig. 2: Top: a waveform plot for a 20-second audio clip y, generated by librosa.display.waveplot. Middle: the log-power short-time
Fourier transform (STFT) spectrum for y plotted on a logarithmic frequency scale, generated by librosa.display.specshow. Bottom:
the onset strength function (librosa.onset.onset_strength), detected onset events (librosa.onset.onset_detect), and
detected beat events (librosa.beat.beat_track) for y.

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

25.00s

27.86s

30.72s

33.58s

36.44s

39.30s

42.16s

45.02s
Recurrence plot

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

0.00s

9.98s

19.99s

-10.01s

0.00s

La
g

Lag plot

Fig. 3: Left: the recurrence plot derived from the chroma features displayed in Figure 1. Right: the corresponding time-lag plot.

>>> y_harmonic = librosa.effects.harmonic(y)

Convenience functions are provided for HPSS (retaining the
harmonic, percussive, or both components), time-stretching
and pitch-shifting. Although these functions provide no ad-
ditional functionality, their inclusion results in simpler, more
readable application code.

Output

The output module includes utility functions to save the
results of audio analysis to disk. Most often, this takes the form
of annotated instantaneous event timings or time intervals,
which are saved in plain text (comma- or tab-separated values)
via output.times_csv and output.annotation, re-
spectively. These functions are somewhat redundant with al-
ternative functions for text output (e.g., numpy.savetxt),
but provide sanity checks for length agreement and semantic

validation of time intervals. The resulting outputs are designed
to work with other common MIR tools, such as mir_eval
[Raffel14] and sonic-visualiser [Cannam10].

The output module also provides the write_wav
function for saving audio in .wav format. The write_wav
simply wraps the built-in scipy wav-file writer
(scipy.io.wavfile.write) with validation and
optional normalization, thus ensuring that the resulting audio
files are well-formed.

Caching

MIR applications typically require computing a variety of fea-
tures (e.g., MFCCs, chroma, beat timings, etc) from each audio
signal in a collection. Assuming the application programmer
is content with default parameters, the simplest way to achieve
this is to call each function using audio time-series input, e.g.:



6 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

harmonic
percussive

0

799

1905

4462

10453

H
z

Harmonic mel spectrogram

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

0

799

1905

4462

10453

H
z

Percussive mel spectrogram

Fig. 4: Top: the separated harmonic and percussive waveforms.
Middle: the Mel spectrogram of the harmonic component. Bottom:
the Mel spectrogram of the percussive component.

>>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
>>> tempo, beats = librosa.beat.beat_track(y=y,
... sr=sr)

However, because there are shared computations between the
different functions—mfcc and beat_track both compute
log-scaled Mel spectrograms, for example—this results in
redundant (and inefficient) computation. A more efficient
implementation of the above example would factor out the
redundant features:

>>> lms = librosa.logamplitude(
... librosa.feature.melspectrogram(y=y,
... sr=sr))
>>> mfcc = librosa.feature.mfcc(S=lms)
>>> tempo, beats = librosa.beat.beat_track(S=lms,
... sr=sr)

Although it is more computationally efficient, the above ex-
ample is less concise, and it requires more knowledge of
the implementations on behalf of the application programmer.
More generally, nearly all functions in librosa eventually de-
pend upon STFT calculation, but it is rare that the application
programmer will need the STFT matrix as an end-result.

One approach to eliminate redundant computation is to
decompose the various functions into blocks which can be
arranged in a computation graph, as is done in Essentia
[Bogdanov13]. However, this approach necessarily constrains
the function interfaces, and may become unwieldy for com-
mon, simple applications.

Instead, librosa takes a lazy approach to eliminating redun-
dancy via output caching. Caching is implemented through an
extension of the Memory class from the joblib package12,
which provides disk-backed memoization of function outputs.
The cache object (librosa.cache) operates as a decorator
on all non-trivial computations. This way, a user can write
simple application code (i.e., the first example above) while
transparently eliminating redundancies and achieving speed
comparable to the more advanced implementation (the second
example).

Parameter Description Values

fmax Maximum frequency value (Hz) 8000, 11025
n_mels Number of Mel bands 32, 64, 128
aggregate Spectral flux aggregation function np.mean,

np.median
ac_size Maximum lag for onset autocor-

relation (s)
2, 4, 8

std_bpm Deviation of tempo estimates
from 120.0 BPM

0.5, 1.0, 2.0

tightness Penalty for deviation from esti-
mated tempo

50, 100, 400

TABLE 1: The parameter grid for beat tracking optimization. The
best configuration is indicated in bold.

The cache object is disabled by default, but can be activated
by setting the environment variable LIBROSA_CACHE_DIR
prior to importing the package. Because the Memory object
does not implement a cache eviction policy (as of version
0.8.4), it is recommended that users purge the cache after
processing each audio file to prevent the cache from filling
all available disk space13. We note that this can potentially
introduce race conditions in multi-processing environments
(i.e., parallel batch processing of a corpus), so care must be
taken when scheduling cache purges.

Parameter tuning

Some of librosa’s functions have parameters that require some
degree of tuning to optimize performance. In particular, the
performance of the beat tracker and onset detection functions
can vary substantially with small changes in certain key
parameters.

After standardizing certain default parameters—sampling
rate, frame length, and hop length—across all functions, we
optimized the beat tracker settings using the parameter grid
given in Table 1. To select the best-performing configura-
tion, we evaluated the performance on a data set comprised
of the Isophonics Beatles corpus14 and the SMC Dataset2
[Holzapfel12] beat annotations. Each configuration was eval-
uated using mir_eval [Raffel14], and the configuration was
chosen to maximize the Correct Metric Level (Total) metric
[Davies14].

Similarly, the onset detection parameters (listed in Table 2)
were selected to optimize the F1-score on the Johannes Kepler
University onset database.15

We note that the "optimal" default parameter settings are
merely estimates, and depend upon the datasets over which
they are selected. The parameter settings are therefore subject
to change in the future as larger reference collections become
available. The optimization framework has been factored out
into a separate repository, which may in subsequent versions
grow to include additional parameters.16

12. https://github.com/joblib/joblib
13. The cache can be purged by calling librosa.cache.clear().
14. http://isophonics.net/content/reference-annotations
15. https://github.com/CPJKU/onset_db
16. https://github.com/bmcfee/librosa_parameters

https://github.com/joblib/joblib
http://isophonics.net/content/reference-annotations
https://github.com/CPJKU/onset_db
https://github.com/bmcfee/librosa_parameters


LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 7

Parameter Description Values

fmax Maximum frequency value
(Hz)

8000, 11025

n_mels Number of Mel bands 32, 64, 128
aggregate Spectral flux aggregation

function
np.mean,
np.median

delta Peak picking threshold 0.0--0.10 (0.07)

TABLE 2: The parameter grid for onest detection optimization. The
best configuration is indicated in bold.

Conclusion

This document provides a brief summary of the design consid-
erations and functionality of librosa. More detailed examples,
notebooks, and documentation can be found in our devel-
opment repository and project website. The project is under
active development, and our roadmap for future work includes
efficiency improvements and enhanced functionality of audio
coding and file system interactions.

Citing librosa

We request that when using librosa in academic work, authors
cite the Zenodo reference [McFee15]. For references to the
design of the library, citation of the present document is
appropriate.

Acknowledgements

BM acknowledges support from the Moore-Sloan Data Sci-
ence Environment at NYU. Additional support was provided
by NSF grant IIS-1117015.

REFERENCES

[Pedregosa11] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel et al. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research 12 (2011):
2825-2830.

[Bergstra11] Bergstra, James, Frédéric Bastien, Olivier Breuleux, Pascal
Lamblin, Razvan Pascanu, Olivier Delalleau, Guillaume
Desjardins et al. Theano: Deep learning on gpus with
python. In NIPS 2011, BigLearning Workshop, Granada,
Spain. 2011.

[Jones01] Jones, Eric, Travis Oliphant, and Pearu Peterson. SciPy:
Open source scientific tools for Python. http://www.scipy.
org/ (2001).

[VanDerWalt11] Van Der Walt, Stefan, S. Chris Colbert, and Gael Varo-
quaux. The NumPy array: a structure for efficient numeri-
cal computation. Computing in Science & Engineering 13,
no. 2 (2011): 22-30.

[Abe95] Abe, Toshihiko, Takao Kobayashi, and Satoshi Imai. Har-
monics tracking and pitch extraction based on instanta-
neous frequency. International Conference on Acoustics,
Speech, and Signal Processing, ICASSP-95., Vol. 1. IEEE,
1995.

[Schoerkhuber10] Schoerkhuber, Christian, and Anssi Klapuri. Constant-Q
transform toolbox for music processing. 7th Sound and
Music Computing Conference, Barcelona, Spain. 2010.

[Smith11] Smith, J.O. "Sinusoidal Peak Interpolation", in Spectral
Audio Signal Processing, https://ccrma.stanford.edu/~jos/
sasp/Sinusoidal_Peak_Interpolation.html , online book,
2011 edition, accessed 2015-06-15.

[Stevens37] Stevens, Stanley Smith, John Volkmann, and Edwin B.
Newman. A scale for the measurement of the psychological
magnitude pitch. The Journal of the Acoustical Society of
America 8, no. 3 (1937): 185-190.

[Slaney98] Slaney, Malcolm. Auditory toolbox. Interval Research Cor-
poration, Tech. Rep 10 (1998): 1998.

[Young97] Young, Steve, Evermann, Gunnar, Gales, Mark, Hain,
Thomas, Kershaw, Dan, Liu, Xunying (Andrew), Moore,
Gareth, Odell, Julian, Ollason, Dave, Povey, Dan, Valtchev,
Valtcho, and Woodland, Phil. The HTK book. Vol. 2. Cam-
bridge: Entropic Cambridge Research Laboratory, 1997.

[Harte06] Harte, C., Sandler, M., & Gasser, M. (2006). Detecting
Harmonic Change in Musical Audio. In Proceedings of
the 1st ACM Workshop on Audio and Music Computing
Multimedia (pp. 21-26). Santa Barbara, CA, USA: ACM
Press. doi:10.1145/1178723.1178727.

[Jiang02] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua
Tao, and Lian-Hong Cai. Music type classification by
spectral contrast feature. In ICME’02. vol. 1, pp. 113-116.
IEEE, 2002.

[Klapuri07] Klapuri, Anssi, and Manuel Davy, eds. Signal processing
methods for music transcription. Springer Science & Busi-
ness Media, 2007.

[Hunter07] Hunter, John D. Matplotlib: A 2D graphics environment.
Computing in science and engineering 9, no. 3 (2007):
90-95.

[Waskom14] Michael Waskom, Olga Botvinnik, Paul Hobson, John B.
Cole, Yaroslav Halchenko, Stephan Hoyer, Alistair Miles,
et al. Seaborn: v0.5.0 (November 2014). ZENODO, 2014.
doi:10.5281/zenodo.12710.

[Boeck12] Böck, Sebastian, Florian Krebs, and Markus Schedl. Eval-
uating the Online Capabilities of Onset Detection Meth-
ods. In 11th International Society for Music Information
Retrieval Conference (ISMIR 2012), pp. 49-54. 2012.

[Ellis07] Ellis, Daniel P.W. Beat tracking by dynamic programming.
Journal of New Music Research 36, no. 1 (2007): 51-60.

[Serra12] Serra, Joan, Meinard Müller, Peter Grosche, and Josep
Lluis Arcos. Unsupervised detection of music boundaries
by time series structure features. In Twenty-Sixth AAAI
Conference on Artificial Intelligence. 2012.

[Ward63] Ward Jr, Joe H. Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association 58, no. 301 (1963): 236-244.

[Lee99] Lee, Daniel D., and H. Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Nature
401, no. 6755 (1999): 788-791.

[Fitzgerald10] Fitzgerald, Derry. Harmonic/percussive separation using
median filtering. 13th International Conference on Digital
Audio Effects (DAFX10), Graz, Austria, 2010.

[Cannam10] Cannam, Chris, Christian Landone, and Mark Sandler.
Sonic visualiser: An open source application for viewing,
analysing, and annotating music audio files. In Proceed-
ings of the international conference on Multimedia, pp.
1467-1468. ACM, 2010.

[Holzapfel12] Holzapfel, Andre, Matthew E.P. Davies, José R. Zapata,
João Lobato Oliveira, and Fabien Gouyon. Selective sam-
pling for beat tracking evaluation. Audio, Speech, and
Language Processing, IEEE Transactions on 20, no. 9
(2012): 2539-2548.

[Davies14] Davies, Matthew E.P., and Boeck, Sebastian. Evaluating
the evaluation measures for beat tracking. In 15th Interna-
tional Society for Music Information Retrieval Conference
(ISMIR 2014), 2014.

[Raffel14] Raffel, Colin, Brian McFee, Eric J. Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, and Daniel PW Ellis.
mir eval: A transparent implementation of common MIR
metrics. In 15th International Society for Music Infor-
mation Retrieval Conference (ISMIR 2014), pp. 367-372.
2014.

[Bogdanov13] Bogdanov, Dmitry, Nicolas Wack, Emilia Gómez, Sankalp
Gulati, Perfecto Herrera, Oscar Mayor, Gerard Roma,
Justin Salamon, José R. Zapata, and Xavier Serra. Essen-
tia: An Audio Analysis Library for Music Information Re-
trieval. In 12th International Society for Music Information
Retrieval Conference (ISMIR 2013), pp. 493-498. 2013.

[McFee15] Brian McFee, Matt McVicar, Colin Raffel, Dawen Liang,
Oriol Nieto, Josh Moore, Dan Ellis, et al. Librosa: v0.4.0.
Zenodo, 2015. doi:10.5281/zenodo.18369.

http://www.scipy.org/
http://www.scipy.org/
https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html
https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html

	Introduction
	Design principles
	Conventions

	Package organization
	Core functionality
	Spectral features
	Display
	Onsets, tempo, and beats
	Structural analysis
	Decompositions
	Effects
	Output

	Caching
	Parameter tuning
	Conclusion
	Citing librosa
	Acknowledgements

	References

